Modern Physics I

Catalog: An introduction to special relativity and elementary quantum mechanics. Topics include spacetime, relativistic energy and momentum, the uncertainty principle, Schrödinger's equation, observables and operators, bound states, potential barriers, and the hydrogen atom.

Hours: 3 credit hours (3 lecture/0 lab)

Prerequisites: University Physics II, Calculus III or Differential Equations (Co-requisite)

Campus Numberings:

Midwestern State University	PHYS 3343	Texas A&M University-Corpus Christi	PHYS 3312
Prairie View A&M University	PHYS 3183	Texas A&M University-Kingsville	PHYS 3343
Tarleton State University	PHYS 334	Texas Southern University	PHYS 332
Texas A&M University-Commerce	PHYS 321	West Texas A&M University	PHYS 3310

COURSE LEARNING OBJECTIVES:

Up	on completion of this course, students will	Assessment	
1.	know how experimental observations and Einstein's postulates lead to the	Embedded course assessment	
	special theory of relativity and be able to use the Lorentz transformation		
	equations to convert the world-view of one moving observer into that of		
	another .		
2.	be able to work problems involving the relativity of space and time;	Embedded course assessment	
	including those involving length contraction, time dilation, simultaneity, the		
	Doppler effect, and the Twin Paradox.		
3.	be able to work problems involving the relativity of mass, energy, and	Embedded course assessment	
	momentum; including those involving mass-energy conversion and binding		
	energy.		
4.	know how special relativity leads to an invariant view of reality where such	Embedded course assessment	
	things as events, the spacetime continuum, intervals, and four-vectors are		
	independent of the observer and be able to use spacetime diagrams to work		
	problems involving these invariants.		
5.	be able to explain why gravity is incompatible with special relativity, why	Embedded course assessment	
	general relativity requires spacetime to be curved, what Einstein's		
	gravitational field equation implies, how gravity causes the path of light rays		
	to be bent, and why the gravitational redshift phenomena occurs.		
6.	know about, and be able to work problems involving the quantization of	Embedded course assessment	
	mass, charge, light, and energy; including problems involving Avogadro's		
	number, black-body radiation, photoelectric effect, and Compton scattering.		
7.	be able to describe the various models of the atom proposed through history	Embedded course assessment	
	and explain why each was proposed and why all were rejected except for the		
0	quantum model.		
8.	be able to explain the wave-particle duality of quantum mechanics and work	Embedded course assessment	
~	problems involving the uncertainty principle.		
9.	know the eigenvalue equation of quantum mechanics and be able to use it to	Embedded course assessment	
	calculate the eigenvalues of various operators and the expectation values of		
10	the corresponding observables.		
	know the Schrödinger equation in one dimension and be able to work	Embedded course assessment	
	problems involving the quantum particle in a box, a well, the simple		
	harmonic oscillator, and the transmission and reflection of waves.		
11.	know the Schrödinger equation in three dimension and be able to work	Embedded course assessment	
	problems involving the separation of variables, quantization of orbital		
	angular momentum, electron spin, spin-orbit coupling, and total angular		

momentum.	
12. be able to work problems involving the wave functions of the hydrogen atom	Embedded course assessment
and explain the organization of the periodic table of the elements.	
13. know the classical Maxwell-Boltzmann distribution and be able to use it with the equipartition theorem to solve problems involving the speed distribution of the molecules of an ideal gas and the classical heat capacity of gases and solids.	Embedded course assessment
14. know the quantum Bose-Einstein and Fermi-Dirac distributions and be able explain how they differ from one another, what causes the Pauli exclusion principle, and how they can be used to predict the properties of liquid helium, B-E condensates, photon gases, and Fermi gases.	Embedded course assessment