1. Symbol-
2. Definition:

Torque is a \qquad .

Magnitude given by:

Direction by the \qquad
3. Torque depends not only on the force, but also on the \qquad of \qquad . If you change the axis then you may change both the \qquad and \qquad of the torque.

Example: Calculate the net torque on the bar shown for the following axis of rotations:

A. Point C

B. Point P

4. Torque is the \qquad analog of force in that it is the cause of \qquad and the change in \qquad .
5. When a string is wrapped around a pulley, the string will always always come off tangent to the pulley (i.e. perpendicular to the radius of the pulley).

For a string on a pulley, the torque is always \qquad .

Example: A compound pulley is created by wielding a pulley with a radius of 2 m to a second pulley with a radius of 4 m . Calculate the net torque applied to the compound pulley about an axis in its center from the two strings attached as shown below:

