Torque

- **1.** Symbol –
- **2.** Definition:

Torque is a ______.

Magnitude given by:

3. Torque depends not only on the force, but also on the ______
of _______. If you change the axis then you may
change both the ______ and ______ of the
torque.

Example: Calculate the net torque on the bar shown for the following

A. Point C

B. Point P

4. Torque is the _____ analog of force in that it is the cause of _____ and the

change in ______.

5. When a string is wrapped around a pulley, the string will always always come off tangent to the pulley (i.e. perpendicular to the radius of the pulley).

For a string on a pulley, the torque is always _____.

Example: A compound pulley is created by wielding a pulley with a radius of 2 m to a second pulley with a radius of 4 m. Calculate the net torque applied to the compound pulley about an axis in its center from the two strings attached as shown below:

