Equilibrium

A body is in equilibrium when:

1) Sum of the external forces is Zero. - Translational Eq.

$$
\sum \vec{F}=0
$$

2) Sum of the external torques is Zero. - Rotational Eq.

$$
\sum \vec{\tau}=0
$$

This is equivalent to saying that acceleration of the center of mass is zero and the angular acceleration about the center of mass is zero.

Important Facts:

1. These two equations are vector equations so each component produces a separate scalar equation that must hold.

For 2-D problems there are three scalar equations:

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum \tau_{z}=0
$$

so you can solve for three unknowns.

For 3-D problem there are six scalar equations:

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum \tau_{x}=0 & \sum \tau_{y}=0 & \sum \tau_{z}=0
\end{array}
$$

so you can solve for six unknowns!!

2. If the sum of forces is equal to zero and the torque is also equal to about a specific axis then it is zero about any parallel axis. Thus, the axis for calculating torques in static problems is arbitrary.

Statics - when equilibrium conditions are used to calculate unknown forces and torques. Statics is an important part of civil and mechanical engineering.

