Projectile Motion

A. A special case of 2-D motion in which the only acceleration is due to gravity.

The acceleration vector is a constant. It points straight down with a magnitude of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
B. Projectile motion can be broken down into two 1-dimensional motion problems connected by a
\qquad .

The vertical motion is a Free Fall problem!!

The horizontal motion is a constant speed problem!!

C. Important Information

1. Only the vertical component of a projectile's velocity is
\qquad at the object's maximum height.
2. You should always break the initial velocity into components! You have no equations for vectors in polar form!
3. The trajectory of a projectile is a parabola and the velocity vector is always tangent to the path.
4. The horizontal component of the velocity is constant.

Example:

A golfer hits a golf ball with a speed of $75 \mathrm{~m} / \mathrm{s}$ and an angle of 30 degrees with respect to the horizontal. Will the golf ball clear a 20 m high tree located 50 m from the ball?

