A belt is attached to the rim of a wheel of radius 25 cm . Assuming that the belt doesn't slip and is traveling at $5 \mathrm{~m} / \mathrm{s}$, what is the angular speed of the wheel?

A pulley of 5.0 cm , on a motor, is turning at $30 \mathrm{rev} / \mathrm{s}$ and slows down to $20 \mathrm{rev} / \mathrm{s}$ in 2.0 s ? What is the average angular acceleration of the pulley?

A disk initially rotating at $20 \mathrm{rad} / \mathrm{s}$ accelerates at a rate of $4 \mathrm{rad} / \mathrm{s}$ for 3 s . The disk then rotates at constant angular velocity for 4 s and then decelerates at a rate of $3 \mathrm{rad} / \mathrm{s}$ till it comes to rest.
a) Draw a qualitative angular velocity-time graph
b) How fast is the disk going at $\mathrm{t}=4 \mathrm{~s}$ ?
c) When will the disk come to rest?
d) Through what angle did the disk rotate before coming to rest?

At $\mathrm{t}=0$, a wheel rotating about a fixed axis at a constant angular acceleration has an angular velocity of $2.0 \mathrm{rad} / \mathrm{s}$. Two seconds later it has turned through 5.0 complete revolutions. What is the angular acceleration of this wheel?
a) $14 \mathrm{rad} / \mathrm{s}^{2}$
b) $17 \mathrm{rad} / \mathrm{s}^{2}$
c) $20 \mathrm{rad} / \mathrm{s}^{2}$
d) $23 \mathrm{rad} / \mathrm{s}^{2}$

