Kinematics I

I. Definitions

A. Kinematics is the \qquad of \qquad
B. A Particle is an object of
and (point).

Position Vector

1. Definition:

The vector that defines the \qquad of a
\qquad with respect to a \qquad
2. Symbol -
3. Units -

4. 2-D Graphical and Analytical Representation

5. The position vector is as it depends on the arbitrary choice of a

Displacement Vector

1. Definition:

The \qquad in the \qquad
\qquad of a particle.

2. Symbol -

3. Formula:

4. Units -

2-D Problems

From our study of vectors, we have that for 2-D problems:

Example: A baseball is initially located 50 feet from the batter at a height of 5 feet. A short time latter the ball is 30 feet from the batter at a height of 4 feet. What is the baseball's displacement?

Note: Graphically, the displacement vector is the vector that you have to add to position vector 1 to get to position vector 2 .

Displacement is NOT the same as distance! Distance is ALWAYS a positive scalar quantity while displacement is a vector quantity.

Example: A runner runs 100 m from point A to point B. The runner then runs 100 m from point B to point A.

a) What is the distance covered?
b) What is the runner's displacement?

Average Velocity

1. Definition:

The average time rate of change of the position vector. equivalently

The displacement vector divided by the change in time.
2. Symbol -

4. Units -

5. Important Facts:

a) To calculate the average velocity, you must first find the displacement vector.
b) The direction of the average velocity is the SAME as the direction of the displacement vector.

Reason: Dividing by Δt is the same as multiplying by the scalar $(1 / \Delta t)$ which is >0 !!
c) Average Velocity is a VECTOR and is NOT the same as Average Speed!

Average Speed \equiv

Example: Assume that our runner in the previous example on displacement covered the distance in 30s.
a) What was the runner's average speed?
b) What was the runner's average velocity?

Question: What is the average velocity and average speed of a runner who runs the 400 m on a circular track in 50 s?

Instantaneous Velocity

1. Definition:

\square

Note: Unless specified otherwise in a problem, velocity means instantaneous VELOCITY.

2. Symbol -

3. Formula -
4. Units -
5. Graphical Representation: For 1-D motion, the velocity of an object at a specific point in time is the \qquad of the \qquad on a position-
time graph at that point.
6. Because velocity is defined in terms of the position vector, it depends on the observer's frame of reference (coordinate axis).

Average Acceleration

1. Definition -
The ___ in \quad in \quad over the
2. Symbol -
3. Formula - a
4. Units -
5. The direction of the average acceleration vector is the
\qquad as the \qquad in the

$$
\text { vector }(\quad) . \text { This is a }
$$

consequence of multiplying a vector by a scalar.

Example: A ball initially is traveling at $20 \mathrm{~m} / \mathrm{s}$ in the positive x direction. Five seconds latter the ball is traveling at $20 \mathrm{~m} / \mathrm{s}$ in the +y-direction.
a) What is the change in the speed of the ball?
b) What is the change in the velocity of the ball?

c) What is the average acceleration of the ball?

Note: It was the direction of the velocity vector that changed on average and not its magnitude (speed). Either change causes acceleration!

Instantaneous Acceleration

1. Definition -

2. Symbol -

4. units -
5. Graphically for 1-D problems, the instantaneous acceleration is the \qquad of the \qquad
\qquad for a velocity-time graph.

