Kinematics I

I. Definitions				
A.	Kinematics is the		_ of	·
В.	A Particle is an object of	of		
		and		(point).

Position Vector

1.	Definition:		
	The vector to	that <u>defines</u> the	of a
		with respect to a	
		·	
2.	Symbol -		
3.	Units -		
4.	2-D Graphi	cal and Analytical Representation	
		\mathbf{y}	
		• Ball	
			X
_			

5.	The position vector is	
	as it <u>depends</u> on the <u>arbitrary</u> <u>choice</u> of a	

Displacement Vector

1. Definition:

The _____ in the ____ of a particle.

- 2. Symbol -
- 3. Formula:
- 4. Units -

2-D Problems

From our study of vectors, we have that for 2-D problems:

Example: A baseball is initially located 50 feet from the batter at a height of 5 feet. A short time latter the ball is 30 feet from the batter at a height of 4 feet. What is the baseball's displacement?

Note: Graphically, the **displacement vector** is the **vector** that you have **to add** to **position vector 1** to get to **position vector 2**.

Displacement is **NOT** the same as **distance**! Distance is ALWAYS a positive scalar quantity while <u>displacement</u> is a **vector quantity**.

Example: A runner runs 100m from point A to point B. The runner then runs 100m from point B to point A.

a) What is the distance covered?

b) What is the runner's displacement?

Average Velocity

1	T	. C*	. • 4 •	on:
•		MIT	1111	nn۰

The <u>average time rate</u> of <u>change</u> of the <u>position vector</u>. **equivalently**

The **displacement vector** <u>divided</u> by the <u>change</u> in **time**.

2. Symbol -

3. Formula - V

4. Units -

5.	Im	port	tant	F	acts
-----------	----	------	------	---	------

- a) To <u>calculate</u> the <u>average velocity</u>, you must **first** <u>find</u> the <u>displacement vector</u>.
- b) The <u>direction</u> of the <u>average</u> velocity is the <u>SAME</u> as the <u>direction</u> of the <u>displacement</u> vector.

Reason: Dividing by Δt is the same as multiplying by the scalar $(1/\Delta t)$ which is > 0!!

c) <u>Average Velocity</u> is a **VECTOR** and is **NOT** the <u>same</u> as Average **Speed**!

Average Speed \equiv

Example: Assume that our runner in the previous example on displacement covered the distance in 30s.
a) What was the runner's average speed?
b) What was the runner's average velocity?
Question: What is the average velocity and average speed of a runner who runs the 400m on a circular track in 50s?

Instantaneous Velocity

The Instantan	eous Velocity is the
of	of the
	·
ote• Unles	s specified otherwise in a problem, velocity means
	s specified otherwise in a problem, velocity means is VELOCITY .
	s specified otherwise in a problem, velocity means is VELOCITY .
<u>istantaneou</u>	
<u>nstantaneou</u>	
<u>nstantaneou</u>	
<u>nstantaneou</u>	
nstantaneou 2. Symbol -	S VELOCITY.
<u>nstantaneou</u>	S VELOCITY.

4. Units -

5. Graphical Representation: For 1-	D motion, the velocity of an
object at a specific point in time is the	of
the	on a position-
time graph at that point.	

6. Because velocity is <u>defined</u> in terms of the <u>position vector</u>, it <u>depends</u> on the <u>observer's frame</u> of <u>reference</u> (<u>coordinate axis</u>).

Average Acceleration

1. D	finition -	
	e in over -	the
2. Sy	mbol -	
3. Fo	rmula - a	
4. U	nits -	
5.	The direction of the average acceleration vector is the	
	as the in the	
	vector (). This is a	
	consequence of multiplying a vector by a scalar.	

Example: A ball initially is traveling at 20 m/s in the positive x-direction. Five seconds latter the ball is traveling at 20 m/s in the +y-direction.

a) What is the change in the speed of the ball?

b) What is the change in the velocity of the ball?

c) What is the average acceleration of the ball?

Note: It was the <u>direction</u> of the <u>velocity</u> vector that <u>changed</u> on average and <u>not</u> its <u>magnitude</u> (<u>speed</u>). <u>Either change</u> causes <u>acceleration</u>!

Instantaneous Acceleration

1.	Definition -
	The Instantaneous Acceleration is the
	of of the
	vector.
2.	Symbol -
3.	Formula - a
4.	units -
5.	Graphically for <u>1-D problems</u> , the instantaneous acceleration
	is the of the
	for a velocity-time graph .