A uniform disk rolls without slipping down a ramp that is inclined at 25.0° above the horizontal. The disk starts at the top of the ramp at rest. If the ramp is 11 m long, what is the sphere's speed at the bottom of the ramp?

$$
H=L \sin \theta
$$

$$
\begin{aligned}
& u_{n c}^{0}=\Delta E \\
& E_{\text {Bottom }}=E_{76 P} \\
& \frac{1}{2} m v_{f}^{2}+\frac{1}{2} I w_{f}^{2}=m g H
\end{aligned}
$$

But $I=\gamma M R^{2}$ with $\gamma=1 / 2$ for a Disks

$$
\begin{aligned}
& \frac{1}{2} M V_{f}^{2}+\frac{1}{2} \gamma M\left(R \omega_{f}\right)^{2}=m g H \\
& \beta u+v_{f}=R \omega_{f} \text { जNoslip condition } \\
& \frac{1}{2}(M+\gamma M) V_{f}^{2}=\operatorname{ng} H \\
& V_{f}^{2}=\frac{2 g H}{1+\gamma} \Rightarrow V_{f}=\sqrt{\frac{2 g 1 t}{1+\gamma}}
\end{aligned}
$$

$\gamma=0$ sliding Block

$$
v_{f}=\sqrt{2 g H}
$$

$$
\begin{array}{ll}
\gamma=2 / 5 \text { sphere } & v_{f}=\sqrt{\frac{3 g H}{1.4}} \\
\gamma=1 / 2 \text { cylinder } & v_{f}=\sqrt{29 \theta}
\end{array}
$$

$$
r=1 \text { troop } v^{f}=\underbrace{\frac{2 g H}{2}}
$$

Alarger γ means mere energy used fer vo taction poles energy remains for translation.
Alternative: 8 M is da effective rotatecial

$$
\Rightarrow M_{\text {Tori } c x \mathbb{I}_{.}}=(1+\gamma) M
$$

