Complex Numbers

A complex number is a number with both a real and an imaginary part.
Ex:

A number written in the form above (standard form) is like a vector written in Cartesian from. This form is useful for adding and subtracting complex numbers.

Ex: Given $\mathrm{A}=3+\mathrm{i} 2$ and $\mathrm{B}=-4+\mathrm{i} 3$, what is $\mathrm{A}+\mathrm{B}$ and $\mathrm{A}-\mathrm{B}$

A complex number can also be written in a form similar to the polar form of a vector with a magnitude and an angle (in radians). This form is called Euler (pronounced "Oiler") form.

Ex:

The complex exponential function in Euler's form is directly related to the cosine and sine function by the equation:

Proof:

We can prove Euler's relationship using the series definitions of the sine, cosine, and exponential function which you should have learned previously in your math courses.

$$
\begin{aligned}
& \cos x= \\
& \sin x= \\
& e^{x}=
\end{aligned}
$$

The Euler form is very useful when multiplying or dividing complex numbers.

Ex: $\quad A=5 e^{i \pi / 2}$ and $B=2 e^{i \pi / 4}$ what is $\mathrm{A} * \mathrm{~B}$ and A / B

We can also use the Euler form to find all the roots (real and complex).

