## AP Physics Fall 2013/Spring 2014

## Test 17 – Resistance, Capacitance, & DC Circuits

| Name: Key                        | <del></del> |  |
|----------------------------------|-------------|--|
| Multiple Choice (Problems 1- 10) | 30 pts      |  |
| Problem 11                       | 6 pts       |  |
| Problem 12                       | 6 pts       |  |
| Problem 13                       | 6 pts       |  |
| Problem 14                       | 8 pts       |  |
| Problem 15                       | 12 pts      |  |
| Problem 16                       | 22 pts      |  |
| Problem 17                       | 10 pts      |  |
| Bonus                            | 16 pts      |  |
|                                  |             |  |
| Total                            |             |  |

|    | В.       | their equivalent resistance is greater than the resistance of any one of the individual resistances.                           |  |
|----|----------|--------------------------------------------------------------------------------------------------------------------------------|--|
|    | C.<br>D. | the same current flows in each one. the power dissipated in each one is the same.                                              |  |
| 2. |          | If you connect two identical storage batteries together in parallel, and place them in a circuit, the combination will provide |  |
|    | A.       | twice the voltage and twice the total charge that one battery would.                                                           |  |
|    | B.       | half the voltage and half the total charge that one battery would.                                                             |  |
|    | (c.)     | the same voltage and twice the total charge that one battery would.                                                            |  |
|    | D.       | twice the voltage and the same total charge that one battery would.                                                            |  |
| 3. |          | s more and more capacitors are connected in parallel, the equivalent pacitance of the combination increase.                    |  |
|    | A.       | never true                                                                                                                     |  |
|    | B.       | Sometimes true; it depends on the voltage of the battery to which the combination is connected.                                |  |
|    | C.       | Sometimes true; it goes up only if the next capacitor is larger than the average of the existing combination.                  |  |
|    | D.       | always true.                                                                                                                   |  |
|    |          |                                                                                                                                |  |

When resistors are connected in parallel, we can be certain that

the electric potential difference across each resistor is the same.

1.

- 4. Kirchhoff's voltage loop rule is an example of
  - A. conservation of charge
- B. conservation of momentum

- (C.)
- conservation of energy
- D. none of the given answers

- 5. Car batteries are rated in "amp-hours." This is a measure of their
  - A. emf
- (B.)
- charge
- C. power
- D. current

- 6. If the voltage across a circuit of constant resistance is doubled, the power dissipated by that circuit will
  - A. decrease to one half

B. double

C. decrease to one fourth

(D.) quadruple

$$P = \frac{V^2}{R}$$

- 7. When two or more capacitors are connected in series to a battery,
  - A. the equivalent capacitance of the combination is less than the capacitance of any of the capacitors.
  - B. each capacitor has the same amount of charge.
  - C. the total voltage across the combination is the algebraic sum of the voltages across the individual capacitors.
  - D. all of the given answers.

- 8. A 110-V hair dryer is rated at 1200 W. What current will it draw?
  - A. 0.090 A
- B. 12 A
- (c.)
- 11 A
- D. 1.0 A

$$P = IV$$

$$\frac{P}{V} = I = \frac{1200W}{110V} \approx 1/A$$

- 9. Consider two copper wires. One has twice the length of the other. How does the resistances of these two wires compare?

  R=PL
  - (A) The longer wire has twice the resistance of the shorter wire.
    - B. The longer wire has half the resistance of the shorter wire.
    - C. Both wires have the same resistance.
    - D. none of the given answers

- 10. Kirchhoff's junction (current) rule is an example of
  - A. conservation of momentum
  - (B) conservation of charge
  - C. conservation of energy
  - D. none of the given answers

6 11. A total of  $2.0 \times 10^{13}$  protons passes a given point in 15 s. What is the current?

$$I = \frac{\Delta Q}{\Delta t}$$

$$I = (2.0 \times 10^{13} \text{ protons}) \left( \frac{1.6 \times 10^{-19} \text{ c}}{1 \text{ proton}} \right)$$

$$= 2.13 \times 10^{-7} \text{ A}$$

$$= 2.13 \times 10^{-7} \text{ A}$$

$$= 0.213 \mu \text{ A}$$

$$= 0.213 \mu \text{ A}$$

$$= 0.213 \mu \text{ A}$$

6 12. If 5.00 A is flowing through a 10.0  $\Omega$  resistor. How much power is being dissipated?

$$P = I^{2}R + 3$$

$$P = (5A)^{2}(10R)$$

$$P = 250 W$$

$$A2 + 1 wits$$

 $\ell$  13. Three resistors of 12 Ω, 24 Ω, and 18 Ω are connected in series. A 12-volt battery is connected to the combination. What is the current flowing through the 12 Ω resistor?



\$ 14. A 2.0 uF capacitor is charged to 12 V and then discharged through a 4.0 M $\Omega$  resistor. How long will it take for the voltage across the capacitor to drop to 3.0 V?

12V 
$$= 2\mu f$$
  $= 4m\pi$   $= RC + 1$   
 $V = V_0 e^{-t/\tau} +$ 

1215.



6 A. What is the resistance in the circuit?

**6** B. What is the voltage across the 6  $\Omega$  resistor?

$$I_{1} = \frac{V_{AB}}{10R} = \frac{20U}{10R} = \frac{2A}{4}$$

$$V_{62} = I_{1}(6R) = (2A)(6RL)$$

$$V_{63} = 12 \text{ Volts}$$

$$(4) \text{ (a) its}$$

In the circuit shown in fig. 27-29,  $\varepsilon_1 = 34.0$ ,  $R_1 = 6.00 \Omega$ , and  $R_2 = 4.00 \Omega$ .



5 **4** A. Find the current in resistor R.

GA-4A = I (3)

I = 2A +1th depends an current direction choice.

**7** B. Find the resistance R.

- C. Find the unknown emf.
- $V_{BA} = -(4A)(R_1) + \mathcal{E} + \mathcal{E} \times VL$   $\mathcal{E} = V_{BA} + (4A)(4SL) + \mathcal{E}$   $\mathcal{E} = 24V + 16V$   $\mathcal{E} = 40V + 16V$   $\mathcal{E} = 40V + 16V$
- 5 D. If the circuit is broken at point x, what is the magnitude of the current in the 34.0 V battery?





A. What is the total capacitance in the circuit?



B. What is the charge on the plate of the 6 uf capacitor?

$$Q \cong (l, 64uf) (20v) \cong \boxed{32.8 uC}$$
 $\textcircled{\text{4}}$ 
 $\textcircled{\text{4}}$ 
 $\textcircled{\text{4}}$ 

## **Bonus**



Copper has a gram molecular weight of 63.5 g and density of 8.92 g/cm $^3$ . A copper wire of cross section 3.00 x  $10^{-6}$  m $^2$  carries a current of 10.0 A. Assuming each copper atom contributes two free electrons to the metal, find the drift speed of the electrons in the wire.

$$I = nq A Vd$$

$$I = nq A Vd$$

$$Vd = I$$

$$nq A$$

$$N = \frac{2e lectrons}{a tom} \left(\frac{\rho}{6mwt}\right)^{NA} + 2$$

$$n = \frac{2e lectrons}{a tom} \left(\frac{g_1 q_2 q_1 cm^3}{63.5 q_1 mole}\right) \left(\frac{6.02 \times 10^{23} tem}{1 mole}\right)$$

$$N = \frac{1.6 q \times 10^{23} cm^{-3}}{(1.6 q \times 10^{23} cm^{-3})(1.6 \times 10^{-6} q_1^2)(100 cm)^2}$$

$$Vd \approx \frac{10 A}{(1.6 q \times 10^{23} cm^{-3})(1.6 \times 10^{-6} q_1^2)(100 cm)^2}$$

$$Vd \approx 0.0123 cm cm s 1.23 \times 10^{-6} m^2$$

$$Vd \approx 0.0123 cm s 1.23 \times 10^{-6} m^2$$

You are trying to make a 6.5 mili-ohm resistor out of a cylindrical rod of carbon with a diameter of 8.4 milimeters and resistivity of 3.5 x  $10^{-5}$   $\Omega$ m. What length of rod should you cut?

$$R = \int_{A}^{L} \underbrace{43}_{A}$$

$$L = \underbrace{RA}_{B} \underbrace{4}_{A} \underbrace{4}_{A}$$

$$L = \underbrace{(6.5m\Omega)}_{A} \underbrace{(\pi)(8.4\times10^{-3})^{2}}_{4}$$

$$L = \underbrace{(6.5m\Omega)}_{4} \underbrace{(\pi)(8.4\times10^{-3})^{2}}_{52.0m}$$

$$L = \underbrace{(6.3m\Omega)}_{4} \underbrace{(\pi)(8.4\times10^{-3})^{2}}_{52.0m}$$

$$L = \underbrace{(6.3m\Omega)}_{4} \underbrace{(\pi)(8.4\times10^{-3})^{2}}_{4mit}$$

$$L = \underbrace{(6.3m\Omega)}_{4} \underbrace{(\pi)(8.4\times10^{-3})^{2}}_{4mit}$$