AP Physics Fall 2013/Spring 2014 Test 14 – Heat & Gas Laws

Name: Key

Multiple Choice (Problems 1-10)	40 pts
Problem 11	7 pts
Problem 12	8 pts
Problem 13	10 pts
Problem 14	13 pts
Problem 15	12 pts
Problem 16	10 pts
Bonus	12 pts
Total	

Standard Properties of Water	Constants
Specific Heats	universal gas constant = 8.314 J mol ⁻¹ K ⁻¹
$ice = 2.09 \text{ J g}^{-1} \text{ K}^{-1}$	Boltzmann constant = $1.38 \times 10^{-23} \text{ J K}^{-1}$
water = $4.184 \text{ J g}^{-1} \text{ K}^{-1}$	Stefan-Boltzman = $5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
steam = $2.03 \text{ J g}^{-1} \text{ K}^{-1}$	Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$
density of water $= 1.00 \text{ g cm}^{-1}$	
density of ice = 0.9176 g cm^{-1}	
heat of fusion = 334 J g ⁻¹	
heat of vaporization = 2260 J g ⁻¹	

1.	When a liquid freezes
	A. the temperature of the substance decreases.
(B.) heat energy leaves the substance.
	C. the temperature of the substance increases.
	D. heat energy enters the substance.
2.	The internal energy of an ideal gas depends on
(A.) its temperature.
	B. its volume.
	C. its pressure.
	D. all of the above.
	A chunk of ice ($T = -20$ °C) is added to a thermally insulated container of cold water ($T=0$ °C). What happens to the container?
	A. The water cools down until thermal equilibrium is established.
	B.) Some of the water freezes and the chunk of ice gets larger.
	C. The ice melts until thermal equilibrium is established.
	D. non of the above.

*

4. By what primary heat transport mechanism does the Sun warm the Earth?			
(A.) radiation	В.	convection	
C. conduction	D.	all of the above in combination	
5. A cup of water is scooped up from a swimming pool of water. Compare the temperature T and the internal energy U of the water, in both the cup and the swimming pool.			
$(A.)$ T_{pool} is equal to T_{cup} , and U_{pool} is greater than U_{cup} .			
B. T_{pool} is less than T_{cup} , and the U is the same.			
C. T_{pool} is equal to T_{cup} , and U_{pool}	is le	ss than U _{cup} .	
D. T_{pool} is greater than T_{cup} , and	the U	is the same.	
6. On a cold day, a piece of metal fe piece of wood. This is due to the physical property?		nuch colder to the touch than a rence in which one of the following	
A. latent heat	В.	specific heat	
C. density	D.	thermal conductivity	

7. Convert 14 K to °C

8. Express -40 °C in °F.

$$T_F = \frac{9}{5}(T_c) + 32 = \frac{9}{5}(-40)^{\circ}F + 32^{\circ}F = -40^{\circ}F$$

9. A mole of diatomic oxygen molecules and a mole of diatomic nitrogen molecules at STP have

A. the same average molecular speeds.

- B. the same diffusion rates.
- (C.) the same number of molecules.
 - D. all of the above.

10. If the absolute temperature of a radiator is doubled, by what factor does the radiating power change?

A. 8

B. 4

C. 2

D.) 16

$$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 = (2)^4 = 16$$

What is the internal energy of a mono-atomic gas composed of 3.5x10²³ atoms at 60 °C?

$$T = (60 + 273) K = 333 K \oplus$$

$$U = \frac{3}{2} (3.5 \times 10^{23}) (1.38 \times 10^{-23} \text{ T}) (333 \text{ K})$$

8 pts 12. Two liters of a perfect gas at 0 °C and 1 atm. If the gas is nitrogen, N₂, determine the number of moles.

The gas is at STP where T= 273K, P= latm We know that Imole occupies 22.4%.

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$
 (+3)

$$n_2 = \left(\frac{V_2}{V_1}\right) n_1$$

$$n_2 = 0.0893l$$
 = units (1)

10pts

13. 1500 cm³ of ideal gas at STP is cooled to -20 °C and put into a 1000 cm³ container. What is the final pressure?

1000 cm³ container. What is the final pressure?

$$T_1 = 273 K V_1 = 1500 cm^3$$

$$T_2 = 253 K V_2 = 1000 cm^3$$

$$T_2 = 253 K V_2 = 1000 cm^3$$

$$T_3 = 253 K V_4 = 1000 cm^3$$

$$P_{2} = (\frac{V_{1}}{V_{2}})(\frac{T_{2}}{T_{1}})P_{1}$$
 (1)

$$P_2 = \left(\frac{1500 \text{ cm}^3}{1000 \text{ cm}^3}\right) \left(\frac{253 \text{ K}}{273 \text{ K}}\right) \left(100 \text{ m}\right)$$

How much heat is required to change 100 g of -10 °C ice to 150 °C

- a) Raise ice to 0°C
 - @ Q = M Cice DT,

- b) Ronvert ice to water
 - OQ = m Lf Q2 = (100g)(334<u>J</u>) = 33.4kJ (1)
- c) Raise water to 100°C
 - (1) Q3 = M Cwater DT3

$$Q_3 = MC_{water} D'_3$$

 $Q_3 = (1009)(4.184 I)(100K) \approx 41.84 k I \in I$

- d) convert water to steam
 - Day = mLv

$$Q_{4} = (100g)(2260J) = 226kJ$$

- e) Raise steam to 150°C
- (I) Q5 = MCsteam DTs $Q_5 = (100g)(2.03 \frac{T}{gk})(50K) \approx 10.15kJ$
- f) Add upall the Qs

f) Add upall the Qs

(1)
$$Q = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 = 313.5 \text{ kJ}$$

(1) $Q = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 = 313.5 \text{ kJ}$

12 pts 15. A 3.0 cm thick brass plate (k = 105 W/K*m) is sealed to a glass sheet (k = 0.80 W/K*m), and both have the same area. The exposed face of the brass plate is 110 °C, while the exposed face of the glass is at 10 °C. How thick is the glass if the glass-brass interface is at 45 °C?

$$T_c$$
 $T_H = 110^{\circ}c$ $T_c = 10^{\circ}c$ $T_m = 45^{\circ}c$
 $X_b = 3cm$ $k_b = 105 \frac{W}{K.m}$ $k_g = 0.8 \frac{W}{K.m}$

For the brass Plate, the heatleaving is

$$\frac{1}{t} = k_b A \left(\frac{T_H - T_m}{X_b} \right)$$
For the glass, the heat entering is

 $\frac{41}{4} = k_g A \left(\frac{T_m - T_{gc}}{X_q} \right)$

(+3) connect heats
$$= \sum_{b} \frac{k_b A'(T_H - T_m)}{X_b} = k_g A'(\frac{T_m - T_c}{X_g})$$

10 pts 16. Determine the change in the volume of a block of cast iron 5.0 cm x10 cm x 6.0 cm, when the temperature changes from 15 °C to 47 °C. The coefficient of linear expansion for cast iron is 1.0x10⁻⁵ °C⁻¹.

$$\beta = 3 \, \alpha \, \beta = 3 \, (1.0 \times 10^{-5} \, {}^{\circ}C^{-1}) = 3.0 \times 10^{-5} \, {}^{\circ}C^{-1} \, \oplus 0$$

Name:	
	BONUS PROBLEMS

12 pts 1. An aluminum cube with 3.5 cm sides is at a temperature of 600 °C. The properties of aluminum are provided in the table below. How much energy will be radiated by the cube in one hour?

thermal conductivity = 237 W m ⁻¹ K ⁻¹	emissivity $= 0.4$
molar heat capacity = 24.2 J mol ⁻¹ K ⁻¹	density = 2.70 g cm^{-3}
heat of fusion = $10.71 \text{ kJ mol}^{-1}$	molecular weight = 26.98 g
heat of vaporization = 294 kJ mol ⁻¹	melting point = 660 °C

$$A = 6L^{2} = 6(3.5 \times 10^{-2})^{2} = 7.35 \times 10^{-3} \text{ m}^{2}$$

$$e = 0.4$$

$$T = (600 + 273) K = 873 K \text{ }$$

$$P = eAoT^{4}$$

$$P = (0.4)(7.35 \times 10^{-3} \text{m}^{2})(5.67 \times 10^{-8} \text{W})(873 \text{K})^{4}$$

$$P = 97.27 \text{ W} \text{ }$$

$$E = P + (97.27 \text{J})(1 \text{ hour})(\frac{36005}{1 \text{ hour}})$$

$$E = 350. \text{ kJ} \text{ }$$