AP Physics Fall 2013 Test 12 (December 11)

Name: Key	
Short Answer	30 pts
Problem 10	9 pts
Problem 11	10 pts
Problem 12	10 pts
Problem 13	13 pts
Problem 14	28pts
Bonus	18 pts
Total	

Name:					

3 pts 1. State the equation that a mechanical system must meet to be a simple harmonic oscillator.

accel. =
$$-\omega^2$$
 Displacement
 $\omega \sim constant$
 $\alpha = -\omega^2 \times$

(Take any of these)

$$\vec{F} = -k\vec{\lambda}$$

3 pts 2 State the definition of pressure (either in words or equation)

$$\int P = \frac{F}{A}$$

6 % pts 3. State the two conditions (either in words or equations) that must be met for a rigid body to be in equilibrium

1) The sum of the forces is zero (+3)
$$\boxed{\vec{Z}\vec{F}=0}$$

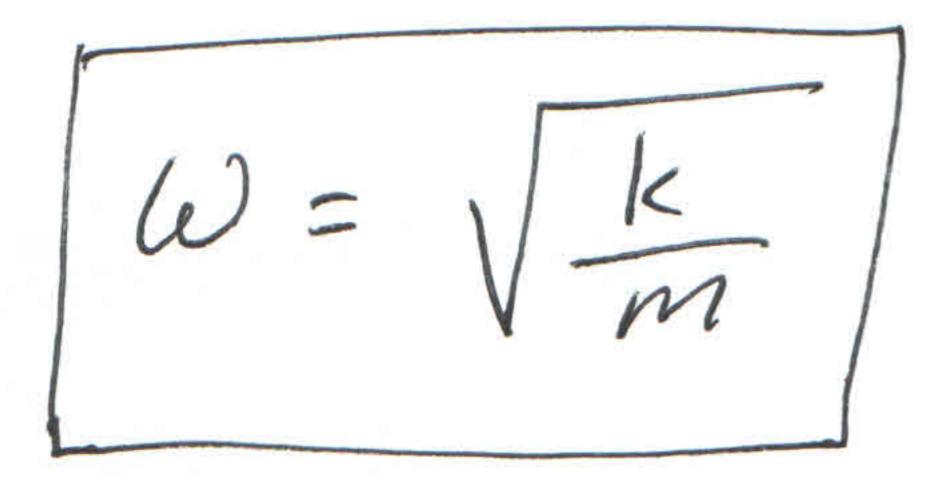
3 pts 4. State the condition required for a pendulum to be a simple harmonic oscillator.

The amplitude of the swings must be Small.

3 pts 5. State Archimedes' Principle in words.

Any object partially or fully submerged in a fluid experiences an upward buoyent force whose magnitude is equal to the weight of the displaced fluid.

3 pts 6. State Pascal's Law (either in words or equation)


The pressure in a fluid increases with depth by a term equal to the product of the density of the fluid, acceleration of growity, and the depth.

3 pts 7. Give the equation that relates the period of any simple harmonic oscillator to its angular frequency.

$$T = \frac{2\pi}{\omega}$$
 or $\omega T = 2\pi$

Name:		
T I TO THE TO		

3 pts 8. Give the equation for finding the angular frequency of a spring-mass oscillator.

What principle tells us that the pressure of a fluid in a tube will decreases with higher speed?

Bernoulli's

- 9 pts 10. A swimming pool is 8.5 m long and 6.5 m wide. The swimming pool is filled to a depth of 3.0 m.
 - 4 pts A. What is the mass of the water?

①
$$M = \rho V$$

① $M = (8.5m)(6.5m)(3.0m) = 165.75m^3$

$$M = (1000 \frac{kq}{m^3})(165,75m^3) \approx 1.66 \times 10^5 kg$$

 $+1)#$ $+10mits$

5 pts **B.** What is the absolute pressure at the bottom of the pool?

$$P = (1.013 \times 10^{5} \frac{N}{m^{2}}) + (1000 \frac{ky}{m^{3}})(9.8 m/s^{2})(3.0 m)$$
(1)

Name:		

10 pts What volume of water will escape per second from an open-top tank through an opening 1.5 cm in diameter that is 3.0 m below the water level in the tank?

$$\frac{1}{2} P_0 = \frac{1}{2} h = y_1 - y_2 = 3.0m$$

=>
$$\frac{1}{2}pv_1^2 + pgy_1 = \frac{1}{2}pv_2^2 + pgy_2 \oplus$$

$$=>$$
 $v_z^2 - 2gh$

=
$$\sqrt{40}$$
 $v_2 = \sqrt{2gh} = \sqrt{2(9.8m/s)(3.0m)} = 7.668m/s$

$$\phi = \frac{\Delta V}{\Delta t} = U_2 A_2 + 2$$
 "Definition of Water Flux"

$$A_2 = \pi \left(\frac{d}{2}\right)^2 + ED$$

$$\phi \simeq (7.668 m/s) \pi \left(\frac{0.015 m}{2}\right) \simeq 1.36 \times 10^{-33} \text{ s}$$

- 10 pts 12. A cube with sides of 13 cm in length and a density of 0.49 g/cm³ is floating in a fluid of density 0.93 g/cm³.
- 6 pts A. What is the buoyant force upon the object?

(#) Floating so B = weight of Object

$$B = mg = p_0 V_0 g$$
 (#)

 $B = (490 \frac{kg}{m^3})(0.13 m)^3 (9.8 m/s^2)$

(#)

B =
$$10.5 \text{ N} - 40 \text{ m}^3$$

$$B = 10.5 \text{ N} - 40 \text{ mits}$$

2Fy=0=B-W

4 pts B. What percent of the object's volume was submerged?

(F)
$$\frac{V_s}{V_o} = \frac{90}{9f}$$
 "Archimede's result"

$$\frac{V_5}{V_0} = \frac{0.49 g / cm^3}{0.93 g / cm^3}$$

$$\underbrace{41}_{V_0} \stackrel{V_s}{=} 0.527$$

Name:	

13. A spring stretches 6.3 cm when a 1.4 kg fish hangs from it. The spring is then attached 0.85 kg block sliding on a frictionless surface to make a horizontal harmonic oscillator as shown below. The mass is then moved so the spring is stretched 12.3 cm and released from rest.

3 pts What is the spring stiffness constant?

$$\sum F_y = may = 0$$

$$F_y = W = 0$$

$$k = Mg = (1.4 leg)(9.8 m/s^2)$$
at is the period of oscillation?

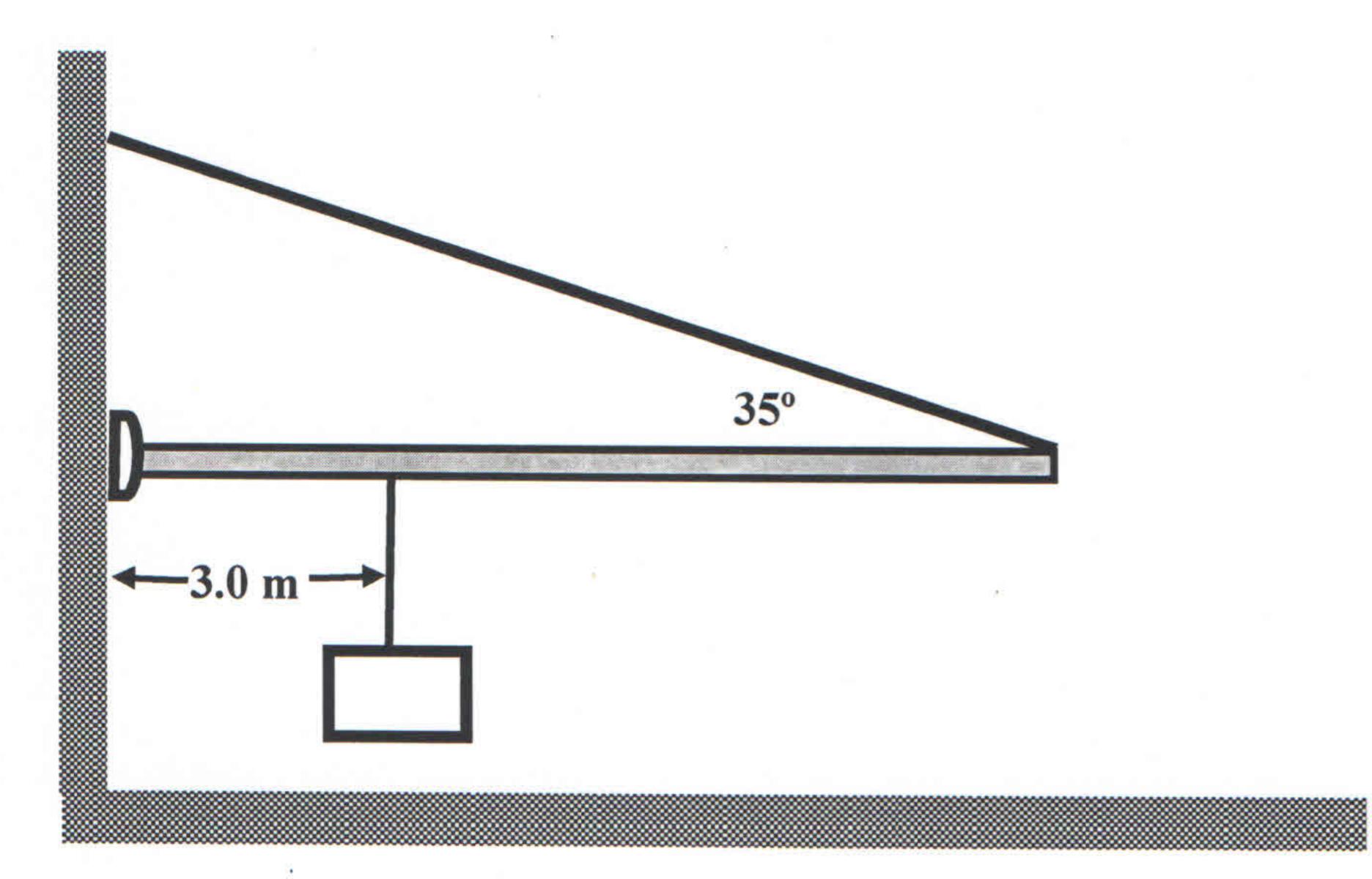
 $k = \frac{Mg}{X} = \frac{(1.4 leg)(9.8 m/s^2)}{0.063 sm} \cong 22.2 N/m \oplus Ans.$ What is the period of oscillation? 5 pts

$$\omega = \sqrt{\frac{k}{m}} \implies T = \frac{2\pi}{\omega} \implies T = 2\pi \sqrt{\frac{m}{k}} \oplus 0$$

What is the maximum speed of the mass? 5 pts

Equivalently
$$E = constant = K + U$$

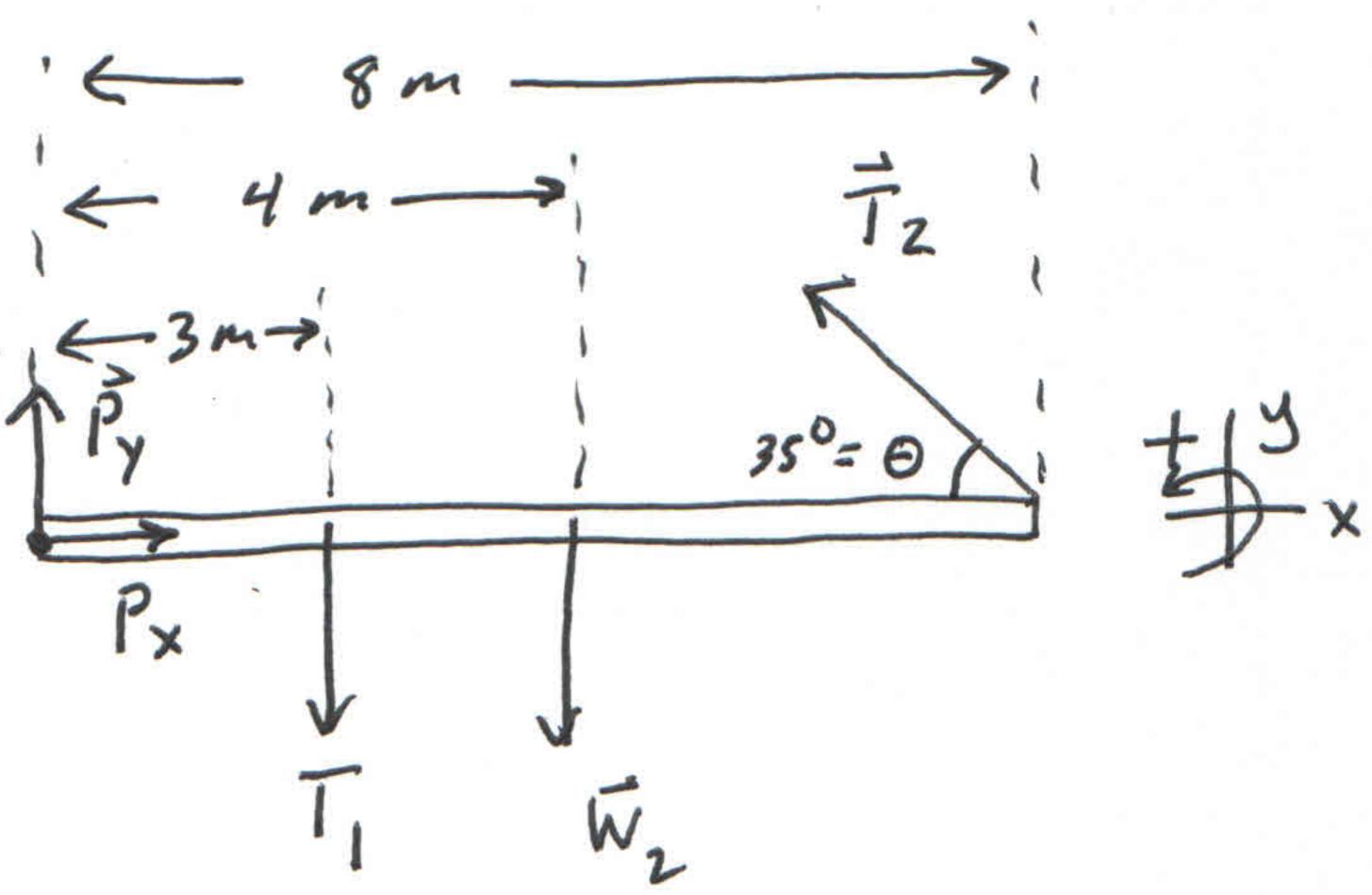
$$\frac{1}{2}kA^{2} = \frac{1}{2}mV_{max}$$


$$\frac{1}{2}kA^{2} = \frac{1}{2}mV_{max}$$

$$V_{max} = \frac{1}{2}kA^{2}$$


$$V_{max} = \sqrt{\frac{1}{2}kA^{2}}$$

Name:		


28 pts A uniform 1200 N beam of length 8.0 m is hinged at one end to the wall and held on the other end by a rope attached to the wall as shown below. A 700 N block is attached to the beam by a second rope at a distance of 3.0 m from the wall.

8 pts Draw proper Free Body Diagrams for the beam and the block.

- 1) 2 force @ 0,5pts = 1,0pts
- 2) laxis Doispts = 0,5pts
- 3) isolated

- 5 forces @ Yzeach = 2.5pts
- 2) 3 dimensions @ Yzeuch = 1.5 pts 3) songle @ 1/2 pts = 0.5 pts
 - 4) laxis with rotation & lpt = 1.0 pts
 - = 0.5pts 5) I so lated body

3 pts B. Find the tension in the rope holding the block.

$$(F)$$
 $T_i = W_i$

6 pts C. Find the tension in the rope attached to the wall.

$$-T_1(3m)-W_2(4m)+T_2\sin(35^\circ)(8m)=0$$
(41)

$$T_2 = W_2(4m) + T_1(3m)$$

 $8m S_{1n}(35^\circ)$

$$T_2 \simeq (1200N)(4m) + (700N)(3m)$$

8m Sin (35°)

Name:		

Find the magnitude and direction of the force applied by the hinge upon the beam?

$$\bigoplus P_{x} - T_{2} \cos \Theta = 0$$

$$(\pm 1) P = \sqrt{P_x^2 + P_y^2}$$

$$\Theta = fin^{-1}\left(\frac{P_{y}}{P_{x}}\right) \cong \boxed{40.1^{\circ}} + \oplus$$

BONUS PROBLEMS

What is the condition necessary for an object to float in a fluid? 4 pts

Density of object must be less than or equal | to the density of the fluid.

They comalso write it in symbols

- Emily say less than

 A simple pendulum is constructed from a bob with mass 0.25 kg and a string of length 2.3 m. The pendulum is released from rest at an angle of $\pi/10$ radians.
- What is the pendulum's angular frequency? 4 pts

$$W = \sqrt{\frac{9}{2}} (42)$$

$$W = \sqrt{\frac{9.8m/s^2}{2.3m}} \approx 2.06 \text{ rad/s} - 40 \text{ mits}$$

4 pts What is the pendulum's frequency in Hertz?

$$f = \frac{\omega}{2\pi} + \frac{42}{2\pi}$$

$$f \approx \frac{2.06 \text{ rad/s}}{2\pi} \approx \boxed{0.328 \text{ Hz} - 40 \text{ units}}$$

- 4 pts 3. Give the value of 2.0 atmospheres in the following units:
 - A. bars

B. torr

2 pts 4. An object has a density of 1450 kg/m³. What is its specific density?