AP Physics Fall 2013

Test 12

Name: \qquad

Short Answer	-	30 pts
Problem 10	-	13 pts
Problem 11	-	7 pts
Problem 12	-	14 pts
Problem 13	-	8 pts
Problem 14	-	28 pts
Bonus		18 pts
Total	-	

Name:
6 pts 1. State the two conditions (either in words or equations) that must be met for a rigid body to be in equilibrium

3 pts 2 State the definition of pressure (either in words or equation)

3 pts 3. State the definition of density (either in words or equation)

3 pts 4. State Pascal's Principle in words.

Name:

3 pts 5. State Archimedes' Principle in words.

3 pts 6. State Pascal's Law (either in words or equation)

3 pts 7. Explain why a person can lie on a bed made up of hundreds of sharp nails and be unharmed, but the same person will have their foot puncture if they step on a single sharp nail.

Name:
3 pts 8. A small amount of water is boiled in a 1-gallon metal can. The can is removed from heat and the lid put on. Shortly thereafter the can collapses. Explain how this occurs?

3 pts 9. Give an example (be specific including drawing a picture if necessary) where an object is not in equilibrium even though the net force upon the object is zero.

Name:

13 pts 10. A swimming pool is 10.0 m long and 4.0 m wide. The swimming pool is filled to a depth of 2.0 m .

4 pts A. What is the mass of the water?

5 pts B. What is the absolute pressure at the bottom of the pool?

4 pts C. What is the force on the bottom of the pool?

Name:
7 pts 11. The maximum gauge pressure in a hydraulic lift is 17.0 atm . What is the largest vehicle by mass that it can lift if the diameter of the output line is 28.0 cm ?

Name: \qquad

14 pts 12. A cube with sides of 15 cm in length and a density of $0.65 \mathrm{~g} / \mathrm{cm}^{3}$ is floating in a fluid of density $0.85 \mathrm{~g} / \mathrm{cm}^{3}$.

6 pts A. What is the buoyant force upon the object?
B. What percent of the object's volume was submerged?

Name:

$4 \mathrm{pts} \quad$ C. What volume of fluid was displaced by the object?

Name: \qquad
8 pts 13. A hydraulic jack is shown below. The large piston's cross sectional area is $200 \mathrm{~cm}^{2}$ and the small piston's cross sectional area is $5 \mathrm{~cm}^{2}$.

If a pressure of $45,000 \mathrm{~Pa}$ is applied to the small piston,
3 pts A. what is the pressure at the large piston?

5 pts B. what is the force on the large piston?

Name: \qquad
28 pts 14. A uniform 1600 N beam of length 4.0 m is hinged at one end to the wall and held on the other end by a rope attached to the wall as shown below. A 700 N block is attached to the end of the beam by a second rope.

8 pts A. Draw proper Free Body Diagrams for the beam and the block.

Name:

3 pts
B. Find the tension in the rope holding the block.

6 pts C. Find the tension in the rope attached to the wall.

Name:

11 pts
D. Find the magnitude and direction of the force applied by the hinge upon the beam?

Name: \qquad

BONUS PROBLEMS

4 pts 1. What is the condition necessary for an object to float in a fluid?
2. Calculate the magnitude of the torque produced by the 400 N force applied to the bar as shown below for an axis perpendicular to the page at:

4 pts A. the left end of the bar

4 pts B. the right end of the bar

Name:

4 pts
3. Give the value of 1.0 atmospheres in the following units:
A. bars
B. torr

2 pts 4. An object has a density of $1250 \mathrm{~kg} / \mathrm{m}^{3}$. What is its specific density?

