AP Physics Fall 2013 Test 12

Name:	
Short Answer	30 pts
Problem 10	13 pts
Problem 11	7 pts
Problem 12	14pts
Problem 13	8pts
Problem 14	28pts
Bonus	18 pts
Total	

Name:		

6 pts **1.** State the two conditions (either in words or equations) that must be met for a rigid body to be in equilibrium

3 pts 2 State the definition of pressure (either in words or equation)

3 pts **3.** State the definition of density (either in words or equation)

3 pts 4. State Pascal's Principle in words.

3 pts 5. State Archimedes' Principle in words.

3 pts 6. State Pascal's Law (either in words or equation)

3pts **7.** Explain why a person can lie on a bed made up of hundreds of sharp nails and be unharmed, but the same person will have their foot puncture if they step on a single sharp nail.

3 pts 8. A small amount of water is boiled in a 1-gallon metal can. The can is removed from heat and the lid put on. Shortly thereafter the can collapses. Explain how this occurs?

3 pts **9.** Give an example (be specific including drawing a picture if necessary) where an object is not in equilibrium even though the net force upon the object is zero.

	Name:		
13 pts	10.	A swimming pool is 10.0 m long and 4.0 m wide. The swimming pool is filled to a depth of 2.0 m.	
4 pts	А.	What is the mass of the water?	

5 pts **B.** What is the absolute pressure at the bottom of the pool?

4 pts C. What is the force on the bottom of the pool?

Name:	
-	

7 pts **11.** The maximum gauge pressure in a hydraulic lift is 17.0 atm. What is the largest vehicle by mass that it can lift if the diameter of the output line is 28.0 cm?

	Name:		
14 pts	12.	A cube with sides of 15 cm in length and a density of 0.65 g/cm ³ is floating in a fluid of density 0.85 g/cm ³ .	
6 pts	А.	What is the buoyant force upon the object?	

4 pts **B.** What percent of the object's volume was submerged?

4 pts **C.** What volume of fluid was displaced by the object?

Name: _

8 pts 13. A hydraulic jack is shown below. The large piston's cross sectional area is 200 cm^2 and the small piston's cross sectional area is 5 cm^2 .

If a pressure of 45,000 Pa is applied to the small piston,

3 pts A. what is the pressure at the large piston?

5 pts **B.** what is the force on the large piston?

Name: _

28 pts 14. A uniform 1600 N beam of length 4.0 m is hinged at one end to the wall and held on the other end by a rope attached to the wall as shown below. A 700 N block is attached to the end of the beam by a second rope.

8 pts A. Draw proper Free Body Diagrams for the beam and the block.

3 pts **B.** Find the tension in the rope holding the block.

6 pts C. Find the tension in the rope attached to the wall.

11 pts **D.** Find the magnitude and direction of the force applied by the hinge upon the beam?

BONUS PROBLEMS

4 pts **1.** What is the condition necessary for an object to float in a fluid?

2. Calculate the magnitude of the torque produced by the 400 N force applied to the bar as shown below for an axis perpendicular to the page at:

4 pts A. the left end of the bar

4 pts **B.** the right end of the bar

4 pts	3.	Give the value of 1.0 atmospheres in the following units:
-------	----	---

A. bars

B. torr

2 pts 4. An object has a density of 1250 kg/m^3 . What is its specific density?