Avecibo, a large radio telescope in

Puerto Rico, gathers electromag-

netic radiation in the form of radio

waves. These long wavelengths

pass through obscuring dust clouds,

allowing astronomers to create

images of the core region of the

Milky Way galaxy, which cant be

observed in the visible spectrum.
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ALTERNATING-
CURRENT CIRCUITS AND
ELECTROMAGNETIC WAVES

Every time we turn on a television set, a stereo system, or any other electric appliances, we
call on alternating currents (AC) to provide the power to operate them. We begin our study of
AC circuits by examining the characteristics of a circuit containing a source of emf and one
other circuit element: a resistor, a capacitor, or an inductor. Then we examine what happens
when these elements are connected in combination with each other. Our discussion is limited
to simple series configurations of the three kinds of elements.

We conclude this chapter with a discussion of electromagnetic waves, which are com-
posed of fluctuating electric and magnetic fields. Electromagnetic waves in the form of visible
fight enable us to view the world around us; infrared waves warm our environment; radio-
frequency waves carry our television and radio programs, as well as information about pro-
cesses in the core of our galaxy; and X-rays allow us to perceive structures hidden inside our
bodies and study properties of distant, collapsed stars. Light is key to our understanding of
the universe.

21.1 RESISTORS IN AN AC CIRCUIT

An AC circuit consists of combinations of circuit elements and an AC generator of
an AC source, which provides the alternating current. We have seen that the out-
put of an AC generator is sinusoidal and varies with time according to

Av = AV, sin 2t [21.1]

' .. is the maximum voltage of the AC
generator, and fis the frequency at which the voltage changes, measured in hertz
(Hz). (Compare Equations 20.7 and 20.8 with Equation 21.1.) We first consider 2

where Av is the instantaneous voltage, AV,

i
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simple circuit consisting of a resistor and an AC source (designated by the symbol
{ I:I ——), as in Active Figure 21.1. The current and the voltage versus time

across the resistor are shown in Active Figure 21.2.

To explain the concept of alternating current, we begin by discussing the cur-
rent versus time curve in Active Figure 21.2. At point a on the curve, the current
has a2 maximum value in one direction, arbitrarily called the positive direction.
Between points a and b, the current is decreasing in magnitude but 1s still in the
positive direction. At point b, the current is momentarily zero; it then begins to
increase in the opposite (negative) direction between points b and c. At point ¢,
the current has reached its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identi-
cally with time. Because the current and the voltage reach their maximum values
at the same time, they are said to be in phase. Notice that the average value of the
current over one cycle is zero because the current is maintained in one direction
(the positive direction) for the same amount of time and at the same magnitude
as it is in the opposite direction (the negative direction). The direction of the cur-
rent, however, has no effect on the behavior of the resistor in the circuit: the colli-
sions between electrons and the fixed atoms of the resistor result in an increase in
the resistor’s temperature regardless of the direction of the current.

We can quantify this discussion by recalling that the rate at which electrical
energy is dissipated in a resistor, the power %, is

P = 2R

where i is the instantaneous current in the resistor. Because the heating effect of a
current is proportional to the square of the current, it makes no difference whether
the sign associated with the current is positive or negative. The heating effect pro-
duced by an alternating current with a maximum value of I, is not the same as that
produced by a direct current of the same value, however. The reason is that the
alternating current has this maximum value for only an instant of time during a
cycle. The important quantity in an AC circuit is a special kind of average value of
current, called the rms current: the direct current that dissipates the same amount
of energy in a resistor that is dissipated by the actual alternating current. To find
the rms current, we first square the current, then find its average value, and finally
take the square root of this average value. Hence, the rms current is the square 700t
of the average (mean) of the square of the current. Because i? varies as sin? 2772, the
average value of i2 is 312, (Fig. 21.3b, page 698).! Therefore, the rms current I
is related to the maximum value of the alternating current I, by

I
Lo === 0.7071
V2

This equation says that an alternating current with a maximum value of 3 A pro-
duces the same heating effect in a resistor as a direct current of (3/V 2) A. We can
therefore say that the average power dissipated in a resistor that carries alternating
Current [is

[21.2]

.
P = I R
We can show that (%), = 1%,./2 as [ollows: The current in the cirenit varies with time according to the expression
P= A osin 2l so = 15 sin? 2t Therefore, we can find the average value ot Ly calculating the average
vilte of sin? 2ft, Note that a graph of cos® 2arftversus time is identical to a graph of sin® 2aft versus time, except
that the points are shilted on the time axis. Thus, the time average of sin= 27f(1s equal to the time average of

o i
€08 2/t taken over one or more cycles. That is,

(sin® 27f1),, = (cos? 27f1),,
With this fact and the trigonometric identity sin? 8 + cos® @ = 1, we get
(sin? 2mrf1) . + (cos? 2mfl),, = 2(sin? 2mfp),, = 1
(sin® 2mft),, = i

When this result is substituted into the expression 2 = I2__sin? 2mfl, we get (i2),, = 1%, =1%,./2, or I,
P max g av

rms max: rms =
i/ V2, where I, is the rms current.

Resistors in an AC Circuit 697

Av =AV,, sin 27ft

ACTIVE FIGURE 21.1

A series circuit consisting of a resistor
R connected to an AC generator,
designated by the symbol

ip,Avg

max

AV Aug

ACTIVE FIGURE 21.2
A plot of current and voltage across a
resistor versus time.



698 Chapter 21

FIGURE 21.3 (a) Plot of the current
in a resistor as a function of time.

(b) Plot of the square of the current
in a resistor as a function of time.
Notice that the gray shaded regions
under the curve and above the dashed
line for 12,,,/2 have the same area
as the gray shaded regions above the
curve and below the dashed line for
12,,,/2. Thus, the average value of I?
is I2,../2.

rms voltage =

TABLE 21.1

Notation Used in This
Chapter

Voltage Current

Instantaneous Av i

value
Maximum AV ax I ax
value
rms value AV, s I s

" EXAMPLE 21.1  What Is the rms. Current?

Goal Perform basic AG circuit calculations for a purely resistive circuit.

Alternating-Current Circuits and Electromagnetic Waves

T

2

i
4
fn\iﬂ(

(w315

2 £ max

(b)
Alternating voltages are also best discussed in terms of rms voltages, with a rela-
tionship identical to the preceding one,

AV ax
AV =

= 0.707 AV [21.3]

where AV, is the rms voltage and AV, is the maximum value of the alternating
voltage.

When we speak of measuring an AC voltage of 120V from an electric outlet,
we actually mean an rms voltage of 120'V. A quick calculation using Equation 21.3
shows that such an AC voltage actually has a peak value of about 170 V. In this
chapter we use rims values when discussing alternating currents and voltages. One
reason is that AC ammeters and voltmeters are designed 10 read rms values. Fur-
ther, if we use rms values, many of the equations for alternating current will have
the same form as those used in the study of direct-current (DC) circuits. Table
91.1 summarizes the notations used throughout this chapter.

Consider the series circuit in Figure 91.1, consisting of a resistor connected to
an AC generator. A resistor impedes the current in an AC circuit, just as it doesina
DG circuit. Ohm’s law is therefore valid for an AC circuit, and we have

AVipms = s [21.4a]

The rms voltage across a resistor is equal to the rms current in the circuit times
the resistance. This equation is also true if maximum values of current and volt-
age are used:

AVimax = Lo [21.4b]

QUICK QUIZ 21.1 Which of the following statements can be true for
a resistor connected in a simple series circuit to an operating AC genera-
tor? (@) P,, =0 and i, =0 (b) ®,, = 0and i, >0 (©) P, >0and i, = 0
(d) ®,,> 0and 4,, > 0

Problem An AC voltage source has an output of Av= (2.00 X 102V) sin 2mft. This source is connected to 2

1.00 X 102 Q resistor as in Figure

91.1. Find the rms voltage and rms current in the resistor.

Strategy Compare the expression for the voltage output just given with the general form, Av = AV, sin 27ft, find-
ing the maximum voltage. Substitute this result into the expression for the rms voltage.




Solution

Obtain the maximum voltage by comparison of the
given expression for the output with the general
€Xpression:

Next, substitute into Equation 21.3 to find the rms
voltage of the source:

Substitute this result into Ohm’s law to find the rms
current:

Remark Notice how the concept of rms values allows the handling of an AC circuit quantit

way as a DC circuit.

QUESTION 21.1

Av = (2.00 X 102 V) sin 27ft
- AV, = 200X 102V

Av = AV_, sin 27ft

AV = AVpae 200 X 10°V ey
™2 V2
AV, 141V
I, = = ——= 141 A
R 1.00 X 102 Q

True or False: The rms current in an AC circuit oscillates sinusoidally with time.

EXERCISE 21.1

Find the maximum current in the circuit and the average power delivered to the circuit.

Answer 2.00 A; 2.00 X 102W

APPLYING PHYSICS 21.1

Cancer cells multiply far more frequently than most
normal cells, spreading throughout the body, using
its resources and interfering with normal functioning.
Most therapies damage both cancerous and healthy
cells, so finding methods that target cancer cells is
important in developing better treatments for the
disease.

Because cancer cells multiply so rapidly, it’s natural
to consider treatments that prevent or disrupt cell
division. Treatments such as chemotherapy interfere
with the cell division cycle, but can also damage
healthy cells. It has recently been found that alternat-
ing electric fields produced by AC currents in the
range of 100 kHz can disrupt the cell division cycle,
cither by slowing the division or by causing a dividing
cell to disintegrate. Healthy cells that divide at only
a very slow rate are less vulnerable than the rapidly-
dividing cancer cells, so such therapy holds out prom-
ise for certain types of cancer.

~—

ELECTRIC FIELDS AND CANCER TREATMENT

The alternating electric fields are thought to affect
the process of mitosis, which is the dividing of the cell
nucleus into two sets of identical chromosomes. Near
the end of the first phase of mitosis, called the pro-
phase, the mitotic spindle forms, a structure of fine
filaments that guides the two replicated sets of chro-
mosomes into separate daughter cells. The mitotic
spindle is made up of a polymerization of dimers
of tubulin, a protein with a large electric dipole
moment. The alternating electric field exerts forces
on these dipoles, disrupting their proper functioning.

Electric field therapy is especially promising for
the treatment of brain tumors because healthy brain
cells don’t divide and therefore would be unharmed
by the alternating electric fields. Research on such
therapies is ongoing.

21.2 CAPACITORS IN AN AC CIRCUIT

To understand the effect of a capacitor on the behavior of a circuit containing
an AC voltage source, we first review what happens when a capacitor is placed in
a circuit containing a DC source, such as a battery. When the switch is closed in
4 series circuit containing a battery, a resistor, and a capacitor, the initial charge

.........................

atively in much the same
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e Avg——| on the plates of the capacitor is zero. The motion of charge through the cireyj i
I . therefore relatively [ree, and there is a large current in the circuit. As more chyy, .
‘Cl accumulates on the capacitor, the voltage across it increases, opposing the cur
rent. After some time interval, which depends on the time constant RC, the cup
rent approaches zero. Consequently, a capacitor in a DG circuit limits or impedeg
the current so that it approaches zero after a briel time.
Now consider the simple series circuit in Figure 21.4, consisting of a Capacitoy

Av =AV,, sin 2mft connected to an AC generator. We sketch curves of current versus time and "“llage

. versus time, and then attempt to make the gra hs seem reasonable. The curves .
FIGURE 21.4 A series circuit consist- B = s — p . Brap VEs dre
ing of a capacitor Cconnected to an shown in Figure 21.5. First, notice that the segment of the current curve from g g
AC generator. bindicates that the current starts out at a rather large value. This large value cap

be understood by recognizing that there is no charge on the capacitor at ¢ = 0; a5
a consequence, there is nothing in the circuit except the resistance of the wires o
hinder the flow of charge at this instant. The current decreases, however, as the
voltage across the capacitor increases from ¢ to d on the voltage curve. When the
voltage is at point d, the current reverses and begins to increase in the opposite
direction (from b to ¢ on the current curve). During this time, the voltage acrosg
the capacitor decreases from d to [because the plates are now losing the charge
they accumulated earlier., The remainder of the cycle for both voltage and current
is a repeat of what happened during the first half of the cycle. The current reaches
a maximum value in the opposite direction at point ¢on the current curve and
then decreases as the voltage across the capacitor builds up.

In a purely resistive circuit, the current and voltage are always in step with each
other. That isn’t the case when a capacitor is in the circuit. In Figure 21.5, when an
alternating voltage is applicd across a capacitor, the voltage reaches its maximum

The voltage across a capacitor ~ value one-quarter of a cycle after the current reaches its maximum value. We say
lags the current by 90° = that the voltage across a capacitor always lags the current by 90°.

The impeding effect of a capacitor on the current in an AC circuit is expressed
in terms of a factor called the capacitive reactance X, defined as

1
Capacitive reactance = Xc = [21.5]

i 2w fC

Ave, ic When Cis in farads and fis in hertz, the unit of X, is the ohm. Notice that 27f = o,
the angular frequency.

- : From Equation 21.5, as the frequency f of the voltage source increases, the
d : capacitive reactance X¢ (the impeding effect of the capacitor) decreases, SO the
AVmax | [ ! Avg current increases. At high frequency, there is less time available to charge
) = t the capacitor, so less charge and voltage accumulate on the capacitor, which trans-
lates into less opposition to the flow of charge and, consequently, a higher current.
The analogy between capacitive reactance and resistance means that we can write
an equation of the same form as Ohm’s law to describe AC circuits containing
FIGURE 21.5  Plots of current and capacitors. This equation relates the rms voltage and rms current in the circuit to

voltage across a capacitor versus time the capacitive reactance:
in an AC circuit. The voltage lags the

current by 90°. AVC,ms = ImsXc [21'6]

Goal Perform basic AC circuit calculations for a capacitive circuit.

Problem An 8.00-uF capacitor is connected to the terminals of an AC generator with an rms voltage of 1.50 X 10V
and a frequency of 60.0 Hz. Find the capacitive reactance and the rms current in the circuit.

Strategy Substitute values into Equations 21.5 and 21.6.
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R .
Solution 1 1
Substitute the values of fand Cinto Equation 21.5: Xe = 3320

= 9mfC . 2m(60.0 Hz)(8.00 X 10°°F)

AVims 150 X 10°V
Solve Equation 21.6 for the current and substitute Lws = }? = 339 () = 0452 A
the values for X, and the rms voltage to find the rms ¢
current:
S T AR R K I 4

Remark Again, notice how similar the technique is to that of analyzing a DC circuit with a resistor.

. QUESTION 21.2

True or False: The larger the capacitance of a capacitor, the larger the capacitive reactance.

EXERCISE 21.2

If the frequency is doubled, what happens to the capacitive reactance and the rms current?

Answer X_is halved, and I is doubled.

e e e e e

21.3 INDUCTORS IN AN AC CIRCUIT

Now consider an AC circuit consisting only of an inductor connected to the ter-
minals of an AC source, as in Active Figure 21.6. (In any real circuit there is some
resistance in the wire forming the inductive coil, but we ignore this consideration
for now.) The changing current output of the generator produces a back emf that
impedes the current in the circuit. The magnitude of this back emf is

Al

Av, = L—

L 7 At
The effective resistance of the coil in an AC circuit is measured by a quantity called

the inductive reactance, X;:

[21.7]

Av=AV,, sin 27ft
ACTIVE FIGURE 21.6

A series circuit consisting of an induc-
tor L connected to an AC generator.

X, = 2wfL [21.8]

When fis in hertz and L is in henries, the unit of X, is the ohm. The inductive
reactance increases with increasing frequency and increasing inductance. Contrast
these facts with capacitors, where increasing frequency or capacitance decreases the
capacitive reactance.

To understand the meaning of inductive reactance, compare Equation 21.8 with
Equation 21.7. First, note from Equation 91.8 that the inductive reactance depends
on the inductance L, which is reasonable because the back emf (Eq. 21.7) is large
for large values of L. Second, note that the inductive reactance depends on the
frequency f. This dependence, too, is reasonable because the back emf depends

on AI/At, a quantity that is large when the current changes rapidly, as it would for Avpip
high frequencies. .

With inductive reactance defined in this way, we can write an equation of the max -
same form as Ohm’s law for the voltage across the coil or inductor: AV, -

AVl..rms = IrmsXL [21.9]

where AV, ., is the rms voltage across the coil and I is the rms current in the

Tms
coil.

Active Figure 21.7 shows the instantaneous voltage and instantaneous current
across the coil as functions of time. When a sinusoidal voltage is applied across

an inductor, the voltage reaches its maximum value one-quarter of an oscillation ~ ACTIVE FIGURE 21.7

Plots of current and voltage across an

period before the current reaches its maximum value. In this situation we say that
the voltage across an inductor always leads the current by 90°.

inductor versus time in an AC circuit.
The voltage leads the current by 90°.
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To see why there is a phase relationship between voltage and curreng, We
examine a few points on the curves of Active Figure 21.7. At point a on the cur.
rent curve, the current is beginning to increase in the positive direction. At thig
instant the rate of change of current, Al/At (the slope of the current curve), s 5
a maximum, and we see from Equation 21.7 that the voltage across the inductey
is consequently also at a maximum. As the current rises between points a and
on the curve, Al/At gradually decreases until it reaches zero at point b. As a resy)¢
the voltage across the inductor is decreasing during this same time interval, a;
the segment between ¢ and d on the voltage curve indicates. Immediately aftep
point b, the current begins to decrease, although it still has the same direction it
had during the previous quarter cycle. As the current decreases to zero (from p g
¢on the curve), a voltage is again induced in the coil (from d to f), but the polarity
of this voltage is opposite the polarity of the voltage induced between c¢and d. This
occurs because back emfs always oppose the change in the current.

We could continue to examine other segments of the curves, but no new infor.
mation would be gained because the current and voltage variations are repetitive,

EXAMPLE 21.3 A Purely Inductive AC Circuit

Goal Perform basic AC circuit calculations for an inductive circuit.

Problem In a purely inductive AC circuit (see Active Fig. 21.6), L = 25.0 mH and the rms voltage is 1.50 X 102V,
Find the inductive reactance and rms current in the circuit if the frequency is 60.0 Hz.

Solution
Substitute L and finto Equation 21.8 to get the induc- X, = 2mfL = 2w (60.0 s71)(25.0 X 10°H) = 9.42Q
tive reactance:

. AWVL,rms 1.50 X 102V
Solve Equation 21.9 for the rms current and Tns = = = 159A
. . X; 9.42 Q)
substitute:

Remark The analogy with DC circuits is even closer than in the capacitive case because in the inductive equivalent
of Ohm’s law, the voltage across an inductor is proportional to the inductance L, just as the voltage across a resistor is
proportional to Rin Ohm’s Jaw.

QUESTION 21.3

True or False: A larger inductance or frequency results in a larger inductive reactance.

EXERCISE 21.3
Calculate the inductive reactance and rms current in a similar circuit if the frequency is again 60.0 Hz, but the rms
voltage is 85.0 V and the inductance is 47.0 mH. ]

Answer X, =17.70Q,1=480A '

._m__l In the foregoing sections we examined the effects of an inductor, a capacitor, and
R L C
©

e

a resistor when they are connected separately across an AC voltage source. We now
consider what happens when these elements are combined.

Active Figure 21.8 shows a circuit containing a resistor, an inductor, and a capac I
itor connected in series across an AC source that supplies a total voltage Av at some
instant. The current in the circuit is the same at all points in the circuit at any |

ACTIVE FIGURE 21.8 instant and varies sinusoidally with time, as indicated in Active Figure 21.9a. This
A series circuit consisting of a resistor, fact can be expressed mathematically as

an inductor, and a capacitor con- . R

nected to an AC generator. i= 1. sin 27ft

—————_ﬁ
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21.4 The RLC Series Circuit 703
Earlier, we learned that the voltage across each element may or may not be in i l/—\ ~
phase with the current. The instantaneous voltages across the three elements, (@) 1 W N7 ¢
shown in Active Figure 21.9, have the following phase relations to the instanta- :
neous current: Avg N O /
(b) e
1. The instantaneous voltage Avg across the resistor is in phase with the instanta- \ ./ N/
neous current. (See Active Fig. 21.9b.) Av, P\ '/\
9. The instantaneous voltage Av; across the inductor leads the current by 90°. (See (<) ) | = ;
Active Fig. 21.9¢.) N/ |V
3. The instantaneous voltage Av. across the capacitor lags the current by 90°. (See Avg el
Active Fig. 21.9d.) @ l[’ AN
/| \ /
: The net instantaneous voltage Av supplied by the AC source equals the sum A I8
of the instantaneous voltages across the separate elements: Av = Ay, + Aug + Az I N LN j
This doesn’t mean, however, that the voltages measured with an AC voltmeter (e) F =

across R, C, and L sum to the measured source voltage! In fact, the measured volt-

ages don’t sum to the measured source voltage because the voltages across R, C.  ACTIVE FIGURE 21.9

and L all have different phases. Ph-ase relati_ons in. the .series RLCcir-
To account for the different phases of the voltage drops, we use a technique cuit shown in Active Figure 21.8.

involving vectors. We represent the voltage across each element with a rotating

vector, as in Figure 91.10. The rotating vectors are referred to as phasors, and

the diagram is called a phasor diagram. This particular diagram represents the

circuit voltage given by the expression Av = AV, sin (27rft + ¢), where AV, 1S

the maximum voltage (the magnitude or length of the rotating vector or phasor)

and ¢ is the angle between the phasor and the positive x-axis when (= 0. The pha-

sor can be viewed as a vector of magnitude AV, rotating at a constant frequency W, /()

fso that its projection along the y-axis is the instantaneous voltage in the circuit. A

Because ¢ is the phase angle between the voltage and current in the circuit, the Av 7 BV

phasor for the current (not shown in Fig. 21.10) lies along the positive x-axis when a \ ®

t = 0 and is expressed by the relation 7 = I,ax SN (277fD). ) X
The phasor diagrams in Figure 91.11 are useful for analyzing the series RLC cir-

cuit. Voltages in phase with the current are represented by vectors along the positive

x-axis, and voltages out of phase with the current lie along other directions. AVy s

horizontal and to the right because it’s in phase with the current. Likewise, AV, is FIGURE 21.10 A phasor diagram for

represented by a phasor along the positive y-axis because it leads the current by 90°. ][:"fh‘;"gﬁ:e‘z:g“l ?Eef“\rec::ﬂ‘l"ehfgig’ge

Finz', **7 iz along the negative y-axis because it lags the current” by 90°. If the pha-  and the current and Avis the instan-

sors are added as vector quantities so as to account for the different phases of the taneous voltage.

voltages across R, L, and C, Figure 91.11a shows that the only x-component for the

voltages is AV, and the net y-component is AV, — AV,. We now add the phasors vecto-

rially to find the phasor AV, (Fig. 91.11b), which represents the maximum voltage.

¥ FIGURE 21.11  (a) A phasor dia-
gram for the RLC circuit. (b) Addi-
tion of the phasors as vectors gives

LAV, AV, = VAVZ + (AV, — AVe)®.
) (c) The reactance triangle that
. ”’,./ gives the impedance relation
Avmax/__~”AVI _AV(v Z= VR’ + (XI, - X(;)Q.
e~ . 3
== e
AVg AVp

(b) ()
A v(,'

(a)

2

V‘A‘mﬂﬁmonic to help you remember the phase relationships in RLC circuits is “EL{ the [CE man.” I represents the
‘."l‘dge &, I'the current, L the inductance, and Cthe capacitance. Thus, the name ELI means that in an inductive

Gircuit, the voltage € leads the current 1. In a capacitive circuit JC.E means that the current Jeads the voltage.
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Impedance =

Phase angle ¢ =

The right triangle in Figure 21.11b gives the following equations for the maXimyp,
voltage and the phase angle ¢ between the maximum voltage and the current:

AV = VAVE + (AV, — AVO? [21.10]
AV, — AV,
tan ¢ = ’_JAVR (2117

In these equations, all voltages are maximum values. Although we choose to yge
maximum voltages in our analysis, the preceding equations apply equally wel] tq
rms voltages because the two quantities are related to each other by the same fac.
tor for all circuit elements. The result for the maximum voltage AV .. given by
Equation 21.10 reinforces the fact that the voltages across the resistor, capacitor,
and inductor are not in phase, so one cannot simply add them to get the voltage
across the combination of element or to get the source voltage.

QUICK QUIZ 21.2 For the circuit of Figure 21.8, is the instantaneous volt-
age of the source equal to (a) the sum of the maximum voltages across the
elements, (b) the sum of the instantaneous voltages across the elements, or
(¢) the sum of the rms voltages across the elements?

We can write Equation 21.10 in the form of Ohm'’s law, using the relations AV, =
IR AV, =1 X, and AV, = [, X, where I, is the maximum current in the

max
circuit:

nax

A‘/max = Imax v R2 + (XL - XC)2 [2112]

It’s convenient to define a parameter called the impedance Z of the circuit as

7= VR + (X, — X)? [21.13]
so that Equation 21.12 becomes
AV = TnaxZ [21.14]

Equation 21.14 is in the form of Ohm’s law, AV = IR, with Rreplaced by the imped-
ance in ohms. Indeed, Equation 21.14 can be regarded as a generalized form of
Ohm’s law applied to a series AC circuit. Both the impedance and therefore the
current in an AC circuit depend on the resistance, the inductance, the capaci-
tance, and the frequency (because the reactances are frequency dependent).

It’s useful to represent the impedance Zwith a vector diagram such as the one
depicted in Figure 21.11c. A right triangle is constructed with right side X; — X¢,
base R, and hypotenuse Z. Applying the Pythagorean theorem to this triangle, we
see that

Z=VE + (X, — X)*
which is Equation 21.13. Furthermore, we see from the vector diagram in Figure

21.11c that the phase angle ¢ between the current and the voltage obeys the rela-
tionship

X, — Xe

[21.15]
R

tan ¢ =

The physical significance of the phase angle will become apparent in Section 21.5.
Table 21.2 provides impedance values and phase angles for some series circuits
containing different combinations of circuit elements.
Parallel alternating current circuits are also useful in everyday applications. We
won’t discuss them here, however, because their analysis is beyond the scope of this
book. i




TABLE 21.2

Impedance Values and Phase Angles for Various Combinations
of Circuit Elements

Circuit Elements Impedance Z Phase Angle ¢

—AWW— R o
P | LA Xe -90°
‘—\.Q.Q.é:!_° 293 +90°

.__m_q Ii, VR? + X% Negative,

between —90° and 0°

‘_W\I__\M/__' \@2 +_ )@ Positive,

between 0° and 90°

R L C S
— AAN—000—{ | VRZ + (X, - X))?  Negative if Xp> X,

Positive if Xp< Xp

Note: In each case an AC voltage (not shown) is applied across the combination of elements
(that is, across the dots).

QUICK QUIZ 21.3 If switch A is closed in Figure 21.12, what happens to
the impedance of the circuit? (a) It increases. (b) It decreases. (c) It doesn’t
change.

QUICK QUIZ 21.4 Suppose X; > X.. If switch A is closed in Figure 21.12,
what happens to the phase angle? (a) It increases. (b) It decreases. (© It
doesn't change.

QUICK QUIZ 21.5 Suppose X; > X. If switch A is left open and switch B
is closed in Figure 21.12, what happens to the phase angle? (a) It increases.
(b) It decreases. (c) It doesn’t change.
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A

FIGURE 21.12 (Quick Quizzes
21.3-21.6)

i

[ e
]
4

QUICK QUIZ 21.6 Suppose X; > X in Figure 21.12 and, with both switches
open, a piece of iron is slipped into the inductor. During this process, what
happens to the brightness of the bulb? (a) It increases. (b) It decreases. (c) It
doesn’t change.

RLC CIRCUITS
The following procedure is recommended for solving series RLC circuit
problems:

1. Calculate the inductive and capacitive reactances, X; and X.

2. Use X; and X, together with the resistance R to calculate the impedance Z
of the circuit.

3. Find the maximum current or maximum voltage drop with the equivalent
of Ohm’s law, AV = I .. 7.

4. Calculate the voltage drops across the individual elements with the appro-

priate variations of Ohm’s law: AVp ., = Lo B, AV} pax = InaxXp, and
AVC,max = ImaxXC'
5. Obtain the phase angle using tan ¢ = (X, — X¢)/R.

|.

Bettmann/Corbis

NIKOLA TESLA
(1856-1943)

Tesla was born in Croatia, but spent
most of his professional life as an
inventor in the United States. He
was a key figure in the development
of alternating-current electricity,
high-voltage transformers, and the
transport of electrical power via AC
transmission lines. Tesla’s viewpoint
was at odds with the ideas of Edison,
who committed himself to the use of
direct current in power transmission.
Tesla’s AC approach won out.
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Goal Analyze a series RLC AC circuit and find the phase angle. ‘

Problem A series RLC AC circuit has resistance R= 2.50 X 102 Q, inductance L= 0.600 H, capacitance ¢
8.560 uF, frequency f= 60.0 Hz, and maximum voltage AV, = 1.50 X 10? V. Find (a) the impedance of the circyj;
(b) the maximum current in the circuit, (c) the phase angle, and (d) the maximum voltages across the elements,

Strategy Calculate the inductive and capacitive reactances, which can be used with the resistance to calculate the 1
impedance and phase angle. The impedance and Ohm's law yield the maximum current.

Solution
(a) Find the impedance of the circuit.

First, calculate the inductive and capacitive X, = 2mfL = 226 Q0 X.=1/2nwfC= 758 Q)

reactances:

Substitute these results and the resistance Rinto Z=VR + (X, — XC.)_2 s
Equation 21.13 to obtain the impedance of the B \/(2 X 1070+ (2260 — 758 =57 e .

circuit:

(b) Find the maximum current in the circuit. g

AV, 150X 10°V
Use Equation 21.12, the equivalent of Ohm’s law, I .. = = = 0.255 A

to find the maximum current: Z 588 (1

(c) Find the phase angle.
o X~ Xe _1(2269 — 758 Q) g,
e =tan | oo e

=ta = —64.8° -3
Calculate the phase angle between the current ¢ n R 950 X 102

and the voltage with Equation 21.15:

(d) Find the maximum voltages across the
elements.

Substitute into the “Ohm’s law” expressions for AV max = Inax R = (0.255 A) (2.50 X 102 Q) = 638V
each individual type of current element:
AV} iax = Tnax X1 = (0.255 A)(2.26 X 102Q) = 57.6V

max

AV e = T Xe = (0.255 A)(7.58 X 102 () = 193V

Remarks Because the circuit is more capacitive than QUESTION 21.4 g -
inductive (X;> X;), ¢ is negative. A negative phase True or False: In an RLC circuit, the impedance must
angle means that the current leads the applied voltage. always be greater than or equal to the resistance. j
Notice also that the sum of the maximum voltages across ey epciSE 21.4
the elemlflrnts 1}31 AV +. AV, + AIV ¢~ 31f4 }Y’ which is mligl(l) Analyze a series RLC AC circuit for which R=175(,
B Bk Gt 215 the surs of the maxic L, =000 H: C=225u0 1= 000 e o e

: o 395 V. Find (a) the impedance, (b) the maximum cut”

mum voltages is a2 meaningless quantity because when .
g & q Y . rent, (c) the phase angle, and (d) the maximum voltages
alternating voltages are added, both their amplitudes and '
across the elements. s

their phases must be taken into account. We know that the
maximum voltages across the various elements occur at Answers (a) 189 Q (b) 1.72A (c) 22.0° (d) AVg max =
different times, so it doesn’t make sense to add all the 301V, AV, .., = 324V, AV, ., = 203V

maximum values. The correct way to “add” the voltages is

through Equation 21.10.




21.5 POWER IN AN AC CIRCUIT

e capacitors and pure inductors in an AC
circuit. A pure capacitor, by definition, has no resistance or inductance, whereas
a pure inductor has no resistance or capacitance. (These definitions are idealiza-
tions: in a real capacitor, for example, inductive effects could become important
at high frequencies.) We begin by analyzing the power dissipated in an AC circuit

that contains only a generator and a capacitor.
When the current increases in one direction in an AC circuit, charge accu-

mulates on the capacitor and a voltage drop appears across it. When the voltage
reaches its maximum value, the energy stored in the capacitor is

PEC = %C(A‘fmax)2

No power losses are associated with pur

however: When the current reverses direc-

This energy storage is only momentary,
he voltage source. Dur-

tion, the charge leaves the capacitor plates and returns to ¢
ing one-half of each cycle the capacitor is being charged, and during the other
half the charge is being returned to the voltage source. Therefore, the average
power supplied by the source is zero. In other words, no power losses occur in a
capacitor in an AC circuit.
Similarly, the source must do work against the back emf of an inductor that
is carrying a current. When the current reaches its maximum value, the energy

stored in the inductor is a maximum and is given by
_1l7y2
PEL - §LImax

tored energy is returned

When the current begins to decrease in the circuit, this s
rrent in the circuit. The

to the source as the inductor attempts to maintain the cu
average power delivered to a resistor in an RLC circuit is

@, = %R [21.16]

nerator is converted to internal energy in

deal capacitor or inductor.
in an AC circuit can be found

to Equation 21.16:

The average power delivered by the ge
the resistor. No power loss occurs in an i

An alternate equation for the average power loss
by substituting (from Ohm’s law) R = AVp e/ Tims I

g)av = Im'ls AVR,rms

Its convenient to refer to a voltage triangle that shows the relationship among
AV, AV e and AV oo — BVeime such as Figure 21.11b. (Remember that Fig.
d rms voltages.) From this figure, we see that the

21.11 applies to both maximum an
voltage drop across a resistor can be written in terms of the voltage of the source,

AV,

rms*

AVvR,rms = AVrms cos ¢
Hence, the average power delivered by a generator in an AC circuit is

P, = L AVms cOs ¢ [21.17]

where the quantity cos ¢ is called the power factor. ,

Equation 21.17 shows that the power delivered by an AC source to any circuit
depends on the phase difference between the source voltage and the resulting
current. This fact has many interesting applications. For example, factories often
use devices such as large motors in machines, generators, and transformers that
have a large inductive load due to all the windings. To deliver greater power 1o
such devices without using excessively high voltages, factory technicians introduce
Capacitance in the circuits to shift the phase.

21.5 Power in an AC Circuit 707

& Average power

APPLICATION

Shifting phase to deliver more
power
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21.5 Average Power in an RLC Series Circuit : 3
Goal Understand power in RLC series circuits.

Problem Calculate the average power delivered to the series RLC circuit described in Example 21.4.

Strategy After finding the rms current and rms voltage with Equations 91.2 and 21.3, substitute into Equation 21 17
using the phase angle found in Example 21.4. ’

N
Solution I 0.955 A
First, use Equations 21.2 and 21.3 to calculate the rms I = = = =0.180 A

_ 2 V2
current and rms voltage:
AV, 1.50 X 10*V
AV = —Fr = =106V
V2 V2
Substitute these results and the phase angle ¢ = P, = I, AV cosd = (0.180 A)(106 V) cos (—64.8°)
— 64.8° into Equation 21.17 to find the average power:
= 812W

o v s e se e i epe s eI B SR Seie a8 e ssie wie euesy v HE g
Remark The same result can be obtained from Equation 21.16, ?,, = 2 R

rms *
QUESTION 21.5
Under what circumstance can the average power of an RLC circuit be zero?

EXERCISE 21.5
Repeat this problem, using the system described in Exercise 21.4.

Answer 259 W

21.6 RESONANCE IN A SERIES RLC CIRCUIT

In general, the rms current in a series RLC circuit can be written

I = AVoms _ /" — [21.18]
z VR + (X, — Xo)*

From this equation, we see that if the frequency is varied, the current has its maxi-

mum value when the impedance has its minimum value, which occurs when X; =

Xc. In such a circumstance, the impedance of the circuit reduces to Z= R. The

frequency f, at which this happens is called the resonance frequency of the cir-

cuit. To find f,, we set X, = Xe which gives, from Equations 91.5 and 21.8,

Tms

FIGURE 21.13 A plot of current
amplitude in a series RLC circuit
versus frequency of the generator volt-
age. Notice that the current reaches

its maximum value at the resonance [
frequency fo. QWﬂ)L quﬁ)c
1
Resonance frequency = f= dgd_\/lTé [21.19]
ar

Figure 21.13 is a plot of current as a function of frequency for a circuit con-
taining a fixed value for both the capacitance and the inductance. From Equation
91.18, it must be concluded that the current would become infinite at resonance
when R = 0. Although Equation 21.18 predicts this result, real circuits always have
some resistance, which limits the value of the current.

APPLICATION The tuning circuit of a radio is an important application of a series resonance

Tuning Your Radio circuit. The radio is tuned to a particular station (which transmits a specific radio-
[requency signal) by varying a capacitor, which changes the resonance frequency
of the tuning circuit. When this resonance frequency matches that of the incom- ]

ing radio wave, the current in the tuning circuit increases. l
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—
APPLYING PHYSICS 21.2 METAL DETECTORS AT THE COURTHOUSE w

When you walk through the doorway of a courthouse
metal detector, as the person in Figure 21.14 is doing,
you are really walking through a coil of many turns.
How might the metal detector work?

Explanation The metal detector is essentially a
resonant circuit. The portal you step through is an
inductor (a large loop of conducting wire) that is part
of the circuit. The frequency of the circuit is tuned to
the resonant frequency of the circuit when there is no
metal in the inductor. When you walk through with
metal in your pocket, you change the effective induc-

tance of the resonance circuit, resulting in a change g
in the current in the circuit. This change in current is 2

d S 8 FIGURE 21.14 (Apply- =
detected, and an electronic circuit causes a sound to ing Physics 21.2) A court- =
be emitted as an alarm. house metal detector. S

Goal Understand resonance frequency and its relation to inductance, capacitance, and the rms current.

Problem Consider a series RLC circuit for which R = 1.50 X 102Q, L =20.0 mH, AV, = 20.0V, and f= 796 s
(a) Determine the value of the capacitance for which the rms current is 2 maximum. (b) Find the maximum rms cur-
rent in the circuit.

Strategy The current is a maximum at the resonance frequency fy, which should be set equal to the driving fre-
quency, 796 s *. The resulting equation can be solved for C. For part (b), substitute into Equation 21.18 to get the
maximum rms current.

Solution
(a) Find the capacitance giving the maximum current
in the circuit (the resonance condition).

. l 1 1
Solve the resonance frequency for the capacitance: o= om /LT - VLC= o - LC= 4—72
20V LG 0 T Jo
. 1
C= =7
4 [y L
Insert the gi 1 bstituting th: f C ! 2.00 X 10°°F
e given values, substituting the source fre- =— 3 = = 2.
quency for the resonance frequency, f;: 4m*(796 Hz)*(20.0 X 10 H)
(b) Find the maximum rms current in the circuit.
. y o AViss 200V
he capacitive and inductive reactances are equal, so I = ; = m = 0.133A
Z= R=1.50 X 102 Q). Substitute into Equation 21.18 )
to find the rms current:
e e e e e e e e e G R T st e sl e e e R &0 STEE SR TR 4

Remark Because the impedance Zis in the denominator of Equation 21.18, the maximum current will always occur
when X, = X.because that yields the minimum value of Z.

QUESTION 21.6

True or False: The magnitude of the current in an RLC circuit is never larger than the rms current.



