Charge and Coulomb's Law

- I. Charge
- A. ______ is the **source** of the **electric force**.

B.	Two type of charge			
	1)			
	2)			
C.	Charge is		!!!	
	You can neither		nor	
		_ charge.		
	You can only			_ it!!

• . •
1f!
 IU.

D. The unit of charge in the S.I. system is the

_____•

The symbol is ______.

E. Charge is ______ in units of **e** (1.6×10^{-19} C).

.

F. <u>Charge is free to move in materials called</u>

TYPE I: Conductors

Type II: Conductors

G.	Charge can NOT move in materials called		
H.	A body is one with equal amounts		
	of positive and negative charge.		
I.	Like charges and unlike charges		

II. Coulomb's Law

 A. The magnitude of the electrostatic force between two <u>point</u> <u>charges</u> is <u>directly proportional</u> to the <u>product</u> of the <u>charges</u> and <u>inversely proportional</u> to the <u>square</u> of the <u>distance</u> between the charges.

Where ε_o is the permattivity of free space.

B. We often combine the various constants in Coulomb's law into a single constant k. This can also be useful for finding the value of ε_0 if you forget.

C. Coulomb's Law is limited to point charges or spherical charges. However, it is extremely important because the formula for any other more complicated charge distribution is found by breaking the charge distribution up into point charges and then the force contributions from Coulomb's law are summed up!! (This is the basis for our work on Electric Fields in the next lesson!!)

EXAMPLE 1:

Consider three point charges located at the corners of a triangle, as shown below, where $q_1 = q_3 = 5.0 \ \mu\text{C}$, $q_2 = -2.0 \ \mu\text{C}$, and a = 0.10

m. Find the resultant force on q_3 .

EXAMPLE 1 (Continued)

EXAMPLE 2:

Two identical small charged spheres, each having a mass of 3.0×10^{-2} kg, hang in equilibrium as shown below. If the length of each string is 0.15 m and the angle $\theta = 5.0^{\circ}$, find the magnitude of the charge on each sphere.

III. Conduction and Induction

- A. <u>Conduction</u> is the <u>transferring</u> of <u>charge</u> between two bodies due to <u>contact</u> between the bodies.
- **B.** <u>Induction</u> is the influencing of <u>charges</u> on a body due to a <u>charged 2^{nd} body that is nearby but <u>NOT TOUCHING</u> the 1^{st} body.</u>

EXAMPLE: Conduction $\begin{array}{c} + + + + + + \\ \hline + + + + + + \\ \hline + + + + + + \\ \hline \end{array}$ Conductor

EXAMPLE: Induction

EXAMPLE: Charging by Induction

- IV. Electric Force V.S. Gravity
- A. Definitions:

Electric force is

Gravity is

B. Comparison:

Property	Electric	Gravity
Source		
Туре		
Range		
Strength		

C. Point Source Results:

Property	Electric	Gravity
Source Dependence		
Space Dependence		
Strength Constant		