PHOTOMETRIC INVESTIGATION OF ECLIPSING BINARY STAR BX DRACONIS (BX DRA)

Shaukat Goderya & Teresa Sykes
Tarleton State University, Stephenville, Texas

Observations and Period Analysis

The data for BX Dra was collected by Jerry Gunn and Brian Hakes using the Jubilee Observatory near Peoria, and the Mead LX 2000 Hanna City Robotic Telescope and CCD photometer at Hanna City, Illinois. BX Dra was observed with B and V bandpass filters on 9 nights in 1997.

1. Period determination
 a) Published elements (IBVS No. 4266)
 Min (I) = HJD 2449810.5924(±1) + 0.57909704(±5)E
 b) Derived 15 new minima in B and V band-pass.
 c) The revised epoch and period through generalized linear least squares program.
 Min (I) = HJD2449810.4843(±1) + 0.57905448(±1)E
 d) O-C for all the available minima and our data is shown below.
 e) Period variation is inconclusive with present data.

Why Study BX Dra?

BX Dra is one of the poorly studied eclipsing binary system. No photometric solutions can be found in literature. The period spectral type diagram (Leung & Schneider) can identify zero age contact (ZAC) and evolved contact (EC) systems. Close systems show case A type mass loss (mass loss during core hydrogen burning). Wider systems can have case B type mass loss (mass lose during shell hydrogen burning).

Ongoing Work

Recent advances in information technology and space based astronomy has lead to a dramatic increase in our ability to acquire astronomical data. Ground based surveys (ROSETSE) and space missions (COROT, KEPLER, GAIA etc.) are already underway or being planned to search for terrestrial planets in our galaxy as well as the local neighborhood of galaxies. These programs directly benefit the field of Eclipsing Binary Stars. It is expected, the number of known eclipsing binary stars from various surveys will increase the database from 10,000 to over 8 million. Artificial intelligence based investigative tools will be needed, to mine and harness such an ever increasing database for new information of astrophysical value. A research program has been started to develop an automated tool, to search and identify contact binary stars from various existing survey photometry data. To assess the effectiveness of the tool a small subset of these systems will be selected for detailed photometric observations with the 32 inch remotely controlled telescope at Tarleton State University.

Acknowledgement: The funding for this project is provided by Tarleton State University.